Skip to main content

Advertisement

Log in

A role for zinc in cerebellar synaptic transmission?

  • Review Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

There is considerable evidence that the transition metal zinc plays an important role in mammalian neural development, physiology and pathology. The most compelling evidence for a synaptic role for zinc comes from hippocampal studies: zinc is concentrated in the synaptic vesicles of some glutamatergic neurons, zinc can be released during neural activity and zinc can modulate postsynaptic GABA and glutamate receptors. The possibility that zinc is involved in cerebellar synaptic transmission is supported by the expression of specific zinc transporters (ZnT, including the synaptic vesicle transporter ZnT-3) in the cerebellar cortex. Furthermore, some subtypes of neurotransmitter receptors, expressed by cerebellar neurones, are highly sensitive to low concentrations of exogenous zinc. However there appears to be little chelatable (synaptic) zinc in the cerebellum, deletion of the ZnT-3 gene has no effect on motor phenotype and there is currently no evidence that zinc is released from cerebellar neurones to have physiological actions. Thus it is possible that the different types of zinc transporter found in the cerebellum play a neuroprotective rather than a signalling role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prasad AS, Miale A, Farid Z, Schulert A, Sansdstead HH. Zinc metabolism in patients with the syndrome of iron deficiency anaemia, hypogonadism and dwarfism. J Lab Clin Med. 1963;61:537–49.

    PubMed  CAS  Google Scholar 

  2. Wallwork JC. Zinc and the central nervous system. Prog Food Nutr Sci. 1987;11:203–47.

    PubMed  CAS  Google Scholar 

  3. Prasad AS. The role of zinc in brain and nerve functions. In: Connor JR, editor. Metals and oxidative damage in neurological disorders. New York: Plenum; 1997. pp 95–111.

    Google Scholar 

  4. Sandstead HH. Neurobiology of zinc. In: Frederickson CJ, Howell GA, Kasarskis EJ, editors. Neurobiology of zinc. New York: Alan R Liss; 1984. pp 1–16.

    Google Scholar 

  5. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118.

    PubMed  CAS  Google Scholar 

  6. Smart TG, Hosie AM, Miller PS. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. The Neuroscientist. 2004;10:432–42.

    Article  PubMed  CAS  Google Scholar 

  7. Frederiskson CJ, Bush AI. Synaptically released zinc: Physiological functions and pathological effects. Biometals. 2001;14:353–66.

    Article  Google Scholar 

  8. Beaulieu C, Dyck R, Cynader M. Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. Neuroreport. 1992;10:861–4.

    Article  Google Scholar 

  9. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: The zinc-containing neuron. J Nutr. 2000;130: 1471S-83S.

    PubMed  CAS  Google Scholar 

  10. Cole TB, Wenzel HJ, Kafer KE, Schwartzkorin PA, Palmiter RD. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA. 1999;96:1716–21.

    Article  PubMed  CAS  Google Scholar 

  11. Palmiter RD, Cole TB, Quaife CJ, Findley SD. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA. 1996;93:14934–9.

    Article  PubMed  CAS  Google Scholar 

  12. Budde T, Minta A, White JA, Kay AR. Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience. 1997;79:347–58.

    Article  PubMed  CAS  Google Scholar 

  13. Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ. Rapid translocation of Zn2+ from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol. 2001;86:2597–604.

    PubMed  CAS  Google Scholar 

  14. Kay AR. Evidence for chelatable zinc in the extracellular space of the hippocampus but little evidence for synaptic release of ZN. J Neurosci. 2003;23:6847–55.

    PubMed  CAS  Google Scholar 

  15. Colvin RA, Fontaine CP, Laskowski M, Thomas D. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharm. 2003;479:171–85.

    Article  CAS  Google Scholar 

  16. Vogt K, Mellor J, Tong G, Nicoll R. The actions of synaptically released zinc at hippocampal mossy fibre synapses. Neuron. 2000;26:187–96.

    Article  PubMed  CAS  Google Scholar 

  17. Ruiz A, Walker MC, Fabian Fine R, Kullmann DM. Endogenous zinc inhibits GABAA receptors in a hippocampal pathway. J Neurophysiol. 2004;91:1091–6.

    Article  PubMed  CAS  Google Scholar 

  18. Euler C. On the significance of the high zinc content in the hippocampal formation. In: Passouant P, editor. Physiologie de l’hippocampe. Paris: Centre National de la Recherche Scientifique; 1962. pp 135–46.

    Google Scholar 

  19. Hassler O, Soremark R. Accumulation of zinc in mouse brain. Arch Neurol. 1968;19:117–20.

    PubMed  CAS  Google Scholar 

  20. Kishi R, Ikeda T, Miyake H, Uchino E, Tsuzuki T, Inoue K. Regional distribution of lead, zinc iron and copper in suckling and adult rat brains. Brain Res. 1982;251:180–2.

    Article  PubMed  CAS  Google Scholar 

  21. Crawford IL, Harris NF. Distribution and accumulation of zinc in whole brain and subcellular fractions of hippocampal homogenates. In: Frederickson CJ, Howell GA, Kasarskis EJ, editors. The neurobiology of zinc. New York: Alan R Liss; 1984. pp 157–71.

    Google Scholar 

  22. Frederickson CJ. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol. 1989;31:145–238.

    Article  PubMed  CAS  Google Scholar 

  23. Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF. Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J Comp Neurol. 2002;447:201–09.

    Article  PubMed  CAS  Google Scholar 

  24. Nitzan YB, Sekler I, Hershfinkel M, Moran A, Silverman WF. Postnatal regulation of ZnT-1 expression in mouse brain. Develop Brain Res. 2002; 137:149–57.

    Article  CAS  Google Scholar 

  25. Wang Z, Danscher G, Kim YK, Dahlstrom A, Jo SM. Inhibitory zinc-enriched terminals in the mouse cerebellum: Double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci Lett. 2002;321:37–40.

    Article  PubMed  CAS  Google Scholar 

  26. Palmiter RD, Findley SD. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995;14:639–49.

    PubMed  CAS  Google Scholar 

  27. Palmiter RD, Cole TB, Findley SD. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996;15:1784–91.

    PubMed  CAS  Google Scholar 

  28. Huang LP, Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genetics. 1997;17:292–7.

    Article  CAS  Google Scholar 

  29. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M. Cloning and characterisation of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem. 2002;277:19049–55.

    Article  PubMed  CAS  Google Scholar 

  30. Haung L, Kirschke CP, Gitschier J. Functional characterisation of a novel mammalian zinc transporter ZnT6. J Biol Chem. 2002;277:26389–95.

    Article  CAS  Google Scholar 

  31. Kirscheke CP, Haung L. ZnT7, a novel mammalian zinc transporter accumulates zinc in the Golgi apparatus. J Biol Chem. 2002;278:4096–102.

    Article  CAS  Google Scholar 

  32. Wang ZY, Stoltenberg M, Huang L, Dansher G, Dahlstrom A, Shi Y, Li JY. Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res Bull. 2005;64:441–8.

    Article  PubMed  CAS  Google Scholar 

  33. Frederickson CJ, Cuajungco MP, LaBuda CJ, Suh SW. Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience. 2002;115:471–4.

    Article  PubMed  CAS  Google Scholar 

  34. Smart TG, Moss SJ, Xie X, Huganir RL. GABAA receptors are differentially sensitive to zinc: Dependence on subunit composition. Br J Pharm. 1991;103:1837–9.

    CAS  Google Scholar 

  35. Draguhn A, Verdoorn TA, Ewert M, Seeburg PH, Sakmann B. Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron. 1990;5:781–8.

    Article  PubMed  CAS  Google Scholar 

  36. Laurie DJ, Seeburg PH, Wisden W. The distribution of thirteen GABA-A receptor subunit mRNAs in rat brainL II. Olfactory bulb and cerebellum. J Neurosci. 1992;12: 1063–76.

    PubMed  CAS  Google Scholar 

  37. Wisen W, Korpi ER, Bahn S. The cerebellum: A model system for studying GABAA receptor diversity. Neuropharmacology. 1996;35:1139–60.

    Article  Google Scholar 

  38. Saxena NC, MacDonald RL. Properties of putative cerebellar c-aminobutyric acidA receptor isoforms. Mol Pharm. 1996;49:567–79.

    CAS  Google Scholar 

  39. Wall MJ, Usowicz MM. Development of action-potentialdependent and independent spontaneous GABA receptor mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci. 1997;9:533–48.

    Article  PubMed  CAS  Google Scholar 

  40. Brickley SG, Cull-Candy SG, Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol. 1996;497:753–9.

    PubMed  CAS  Google Scholar 

  41. Rossi DJ, Hamann M. Spill-over mediated inhibitory currents promoted by high affinity α6 subunit GABAA receptors and glomerular geometry. Neuron. 1998;20:783–95.

    Article  PubMed  CAS  Google Scholar 

  42. Nusser Z, Sieghart W, Somogyi P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci. 1998;18:1693–703.

    PubMed  CAS  Google Scholar 

  43. Wall MJ. Actions of zinc at mature Golgi cell to granule cell synapses in cerebellum or rats and mice. Neuro Lett. 2004;367:101–04.

    Article  CAS  Google Scholar 

  44. Mellor JR, Wisden W, Randall AD. Somato-synaptic variation of GABA(A)n receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit. Neuropharmacology. 2000;39:1495–513.

    Article  PubMed  CAS  Google Scholar 

  45. Sharonova IR, Vorobjev VS, Haas HL. Interaction between copper and zinc at GABAA rceptors in acutely isolated cerebellar Purkinje cells of the rat. Br J Pharm. 2000;130:851–6.

    Article  CAS  Google Scholar 

  46. Westbrook GL, Mayer ML. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature. 1987;328:640–3.

    Article  PubMed  CAS  Google Scholar 

  47. Rassendren FA, Lory P, Pin JP, Nargeot J. Zinc has opposite effects on NMDA and non-NMDA receptors expressed inXenopus oocytes. Neuron. 1990;4:733–40.

    Article  PubMed  CAS  Google Scholar 

  48. Paoletti P, Ascher P, Neyton J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci. 1997;17: 5711–25.

    PubMed  CAS  Google Scholar 

  49. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol. 2001;11:327–35.

    Article  PubMed  CAS  Google Scholar 

  50. Mitchell SJ, Silver RA. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature. 2000;404:498–502.

    Article  PubMed  CAS  Google Scholar 

  51. Mitchell SJ, Silver RA. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J Neurosci. 2000;20:8651–8.

    PubMed  CAS  Google Scholar 

  52. Cathala L, Misra C, Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci. 2000;20: 5899–905.

    PubMed  CAS  Google Scholar 

  53. Perkel DJ, Hestrin S, Sah P, Nicoll RA. Excitatory synaptic currents in Purkinje cells. Proc Royal Soc B. 1990;241: 116–21.

    Article  CAS  Google Scholar 

  54. Misra C, Brickley SG, Wyllie DJ, Cull-Candy SG. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. J Physiol. 2000;525:299–305.

    Article  PubMed  CAS  Google Scholar 

  55. Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A. Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current IKSO, by zinc. J Physiol. 2004;560:51–62.

    Article  PubMed  CAS  Google Scholar 

  56. Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG. Subunit-dependent highaffinity zinc inhibition of acid sensing ion channels. J Neurosci. 2004;24:8678–89.

    Article  PubMed  CAS  Google Scholar 

  57. Allen NJ, Attwell D. Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischemia-related signals. J Physiol. 2002;543:521–9.

    Article  PubMed  CAS  Google Scholar 

  58. Choi DW, Yokoyama M, Koh J. Zinc neurotoxicity in cortical cell culture. Neuroscience. 1988;24:67–79.

    Article  PubMed  CAS  Google Scholar 

  59. Suh SW, Danscher G, Jensen MS, Thompson R, Motamedi M, Frederickson CJ. Release of synaptic zinc is substantially depressed by conventional brain slice preparations. Brain Res. 2000;879:7–12.

    Article  PubMed  CAS  Google Scholar 

  60. Cole TB, Martyanova A, Palmiter RD. Removing zinc from synaptic vesicles does not impair spatial learning, memory or sensorimotor functions in the mouse. Brain Res. 2001;891:253–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Wall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wall, M.J. A role for zinc in cerebellar synaptic transmission?. Cerebellum 4, 224–229 (2005). https://doi.org/10.1080/14734220500242084

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500242084

Key words

Navigation