Skip to main content
Log in

The involvement of the human cerebellum in eyeblink conditioning

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Besides its known importance for motor coordination, the cerebellum plays a major role in associative learning. The form of cerebellum-dependent associative learning, which has been examined in greatest detail, is classical conditioning of eyeblink responses. The much advanced knowledge of anatomical correlates, as well as cellular and molecular mechanisms involved in eyeblink conditioning in animal models are of particular importance because there is general acceptance that findings in humans parallel the animal data. The aim of the present review is to give an update of findings in humans. Emphasis is put on human lesion studies, which take advantage of the advances of high-resolution structural magnetic resonance imaging (MRI). In addition, findings of functional brain imaging in healthy human subjects are reviewed. The former helped to localize areas involved in eyeblink conditioning within the cerebellum, the latter was in particular helpful in delineating extracerebellar neural substrates, which may contribute to eyeblink conditioning. Human lesion studies support the importance of cortical areas of the ipsilateral superior cerebellum both in the acquisition and timing of conditioned eyeblink responses (CR). Furthermore, the ipsilateral cerebellar cortex seems to be also important in extinction of CRs. Cortical areas, which are important for CR acquisition, overlap with areas related to the control of the unconditioned eyeblink response. Likewise, cortical lesions are followed by increased amplitudes of unconditioned eyeblinks. These findings are in good accordance with the animal literature. Knowledge about contributions of the cerebellar nuclei in humans, however, is sparse. Due to methodological limitations both of human lesion and functional MRI studies, at present no clear conclusions can be drawn on the relative contributions of the cerebellar cortex and nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Squire LR. Memory systems of the brain: A brief history and current perspective. Neurobiol Learn Mem. 2004;82:171–7.

    PubMed  Google Scholar 

  2. Thompson RF. In search of memory traces. Annu Rev Psychol. 2005;56:1–23.

    PubMed  Google Scholar 

  3. Thach WT. A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem. 1998;70:177–88.

    PubMed  CAS  Google Scholar 

  4. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.

    PubMed  Google Scholar 

  5. Medina JF, Ohyama WL, Mauk M. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10:717–24.

    PubMed  CAS  Google Scholar 

  6. Steinmetz JE. Brain substrates of classical eyeblink conditioning: A highly localized but also distributed system. Behav Brain Res. 2000;110:13–24.

    PubMed  CAS  Google Scholar 

  7. Delgado-García JM, Gruart A. The role of the interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002; 1:289–308.

    PubMed  Google Scholar 

  8. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;11:427–55.

    Google Scholar 

  9. Bracha V. Role of the cerebellum in eyeblink conditioning. Prog Brain Res. 2004;143:331–9.

    PubMed  Google Scholar 

  10. De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15:667–74.

    PubMed  CAS  Google Scholar 

  11. Delgado-García JM, Gruart A. Buildungnewmotorresponses: eyelid conditioning revisited. TINS. 2006;29:330–8.

    PubMed  Google Scholar 

  12. Woodruff-Pak DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: Volume I. Applications in humans. Norwell, Massachusetts: Kluwer; 2000. pp 1–17.

    Google Scholar 

  13. Kolb FP, Irwin KB, Bloedel JR, Bracha V. Conditioned and unconditioned forelimb reflex systems in the cat: involvement of the intermediate cerebellum. Exp Brain Res. 1997;114:255–70.

    PubMed  CAS  Google Scholar 

  14. Timmann D, Kolb FP, Baier C, Rijntjes M, Muller SP, Diener HC, et al. Cerebellar activation during classical conditioning of the human flexion reflex: a PET study. Neuroreport. 1996;7:2056–60.

    PubMed  CAS  Google Scholar 

  15. Timmann D, Baier PC, Diener HC, Kolb FP. Classically conditioned withdrawal reflex in cerebellar patients. 1. Impaired conditioned responses. Exp Brain Res. 2000; 130:453–70.

    PubMed  CAS  Google Scholar 

  16. Supple WF Jr, Leaton RN. Lesions of the cerebellar vermis and cerebellar hemispheres: Effects on heart rate conditioning in rats. Behav Neurosci. 1990;104:934–47.

    PubMed  Google Scholar 

  17. Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FB, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72:116–8.

    PubMed  CAS  Google Scholar 

  18. Linden DJ. Neuroscience. From molecules to memory in the cerebellum. Science. 2003;301:1682–5.

    PubMed  CAS  Google Scholar 

  19. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–75.

    PubMed  CAS  Google Scholar 

  20. Oakley DA, Russell IS. Subcortical storage of Pavlovian conditioning in the rabbit. Physiol Behav. 1977;18:931–7.

    PubMed  CAS  Google Scholar 

  21. Mauk MD, Thompson RF. Retention of classically conditioned eyelid responses following acute decerebration. Brain Res. 1987;403:89–95.

    PubMed  CAS  Google Scholar 

  22. McCormick DA, Clark GA, Lavond DG, Thompson RF. Initial localization of the memory trace for a basic form of learning. Proc Natl Acad Sci USA. 1982;79:2731–5.

    PubMed  CAS  Google Scholar 

  23. Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit II. Lesions of the cerebellar cortex. Exp Brain Res. 1985;60:99–113.

    PubMed  CAS  Google Scholar 

  24. Lavond DG, Steinmetz JE. Acquisition of classical conditioning without cerebellar cortex. Behav Brain Res. 1989;33:113–64.

    PubMed  CAS  Google Scholar 

  25. Welsh JP, Harvey JA. Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. J Neurosci. 1989;9:299–311.

    PubMed  CAS  Google Scholar 

  26. Harvey JA, Welsh JP, Yeo CH, Romano AG. Recoverable and nonrecoverable deficits in conditioned responses after cerebellar cortical lesions. J Neurosci. 1993;13:1624–35.

    PubMed  CAS  Google Scholar 

  27. Kelly TM, Zuo CC, Bloedel JR. Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit. Behav Brain Res. 1990;38:7–18.

    PubMed  CAS  Google Scholar 

  28. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    PubMed  CAS  Google Scholar 

  29. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Google Scholar 

  30. Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.

    PubMed  CAS  Google Scholar 

  31. Yeo CH, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2:322–30.

    Google Scholar 

  32. Cooke SF, Attwell PJ, Yeo CH. Temporal properties of cerebellar-dependent memory consolidation. J Neurosci. 2004;24:2934–41.

    PubMed  CAS  Google Scholar 

  33. Medina JF, Christopher Repa J, Mauk MD, LeDoux JE. Parallels between cerebellum-and amygdala-dependent conditioning. Nat Rev Neurosci. 2002;3:122–31.

    PubMed  CAS  Google Scholar 

  34. Zhang W, Linden DJ. Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. J Neurosci. 2006;26:6935–44.

    PubMed  CAS  Google Scholar 

  35. Ito M. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci. 2002;3:896–902.

    PubMed  CAS  Google Scholar 

  36. Moore JW (editor). A neuroscientist’s guide to classical conditioning. New York: Springer; 2001.

    Google Scholar 

  37. Konorski J. Conditioned reflexes and neuron organization. Cambridge: Cambridge University Press; 1948.

    Google Scholar 

  38. Rescorla RA. Behavioural studies of Pavlovian conditioning. Ann Rev Neurosci. 1988;11:329–52.

    PubMed  CAS  Google Scholar 

  39. Mackintosh NJ. Conditioned and associative learning. Oxford: Oxford University Press; 1983.

    Google Scholar 

  40. Wasserman EA, Miller RR. What’s elementary about associative learning? Ann Rev Psychol. 1997;48:573–607.

    CAS  Google Scholar 

  41. Solomon PR. Classical conditioning: applications and extensions to clinical neuroscience. In: Moore JW, editor. A neuroscientist’s guide to classical conditioning. New York: Springer; 2001. pp 147–70.

    Google Scholar 

  42. Woodruff-Pak DS, Goldenberg G, Downey-Lamb MM, Boyko OB, Lemieux SK. Cerebellar volume in humans related to magnitude of classical conditioning. Neuroreport. 2000;11:609–15.

    PubMed  CAS  Google Scholar 

  43. Luft AR, Skalej M, Schulz JB, Welte D, Kolb R, Burk K, Klockgether T, Voight K. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using threedimensional MRI volumetry. Cereb Cortex. 1999;9: 712–21.

    PubMed  CAS  Google Scholar 

  44. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107: 748–56.

    PubMed  CAS  Google Scholar 

  45. Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–69.

    PubMed  Google Scholar 

  46. Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10:443–58.

    Google Scholar 

  47. Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126:71–94.

    PubMed  CAS  Google Scholar 

  48. Fortier CB, Disterhoft JF, McGlinchey-Berroth R. Cerebellar cortical degeneration disrupts discrimination learning but not delay or trace classical eyeblink conditioning. Neuropsychol. 2000;14:537–50.

    CAS  Google Scholar 

  49. Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, Kolb FP, et al. Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res. 2006; 170: 7–21.

    PubMed  CAS  Google Scholar 

  50. Lye RH, Boyle DJ, Ramsden RT, Schady W. Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. J Physiol. 1988;403:58P.

    Google Scholar 

  51. Solomon PR, Stowe GT, Pendlbeury WW. Disrupted eyelid conditioning in a patient with damage to cerebellar afferents. Behav Neurosci. 1989;103:898–902.

    PubMed  CAS  Google Scholar 

  52. Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120: 1401–13.

    PubMed  Google Scholar 

  53. Bracha V, Zhao L, Irwin KB, Bloedel JR. The human cerebellum and associative learning: dissociation between the acquisition, retention and extinction of conditioned eyeblinks. Brain Res. 2000;860:87–94.

    PubMed  CAS  Google Scholar 

  54. Steinmetz JE, Tracy JA, Green JT. Classical eyeblink conditioning: clinical models and applications. Integr Physiol Behav Sci. 2001;36:220–38.

    PubMed  CAS  Google Scholar 

  55. Marenco S, Weinberger DR, Schreurs BG. Single-cue delay and trace classical conditioning in schizophrenia. Biol Psychiatry. 2003;53:390–402.

    PubMed  Google Scholar 

  56. Coffin JM, Baroody S, Schneider K, O’Neill J. Impaired cerebellar learning in children with prenatal alcohol exposure: a comparative study of eyeblink conditioning in children with ADHD and dyslexia. Cortex. 2005;41: 389–98.

    PubMed  Google Scholar 

  57. Kronenbuerger M, Gerwig M, Brol B, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain (in revision).

  58. Timmann D, Baier C, Diener HC, Kolb FP. Impaired acquisition of limb flexion reflex and eyeblink classical conditioning in a cerebellar patient. Neurocase. 1998;4: 207–17.

    Google Scholar 

  59. Amarenco P, Hauw JJ, Caplan LR. Cerebellar infarctions. In: Lechtenberg R, editor. Handbook of cerebellar diseases. New York: Marcel Dekker; 1993. pp 251–90.

    Google Scholar 

  60. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego: Academic Press; 2000.

    Google Scholar 

  61. Dimitrova A, Weber J, Redies C, Kindsvater K, Maschke M, Kolb FP, et al. MRI atlas of the human cerebellar nuclei. Neuroimage. 2002;17:240–55.

    PubMed  CAS  Google Scholar 

  62. Attwell PJ, Rahman S, Yeo CH. Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J Neurosci. 2001;21: 5715–22.

    PubMed  CAS  Google Scholar 

  63. Hardiman MJ, Yeo CH. The effect of kainic acid lesions of the cerebellar cortex on the conditioned nictitating membrane response in the rabbit. Eur J Neurosci. 1992;4: 966–80.

    PubMed  Google Scholar 

  64. Gruart A, Yeo CH. Cerebellar cortex and eyeblink conditioning: Bilateral regulation of conditioned responses. Exp Brain Res. 1995;104:431–48.

    PubMed  CAS  Google Scholar 

  65. Yeo CH, Lobo DH, Baum A. Acquisition of a new-latency conditioned nictitating membrane response - major, but not complete, dependence on the ipsilateral cerebellum. Learn Mem. 1997;3:557–77.

    PubMed  CAS  Google Scholar 

  66. Logan CG, Grafton ST. Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography. Proc Natl Acad Sci USA. 1995;92:7500–4.

    PubMed  CAS  Google Scholar 

  67. Blaxton TA, Zeffiro TA, Gabrieli JD, Bookheimer SY, Carrillo MC, Theodore WH, et al. Functional mapping of human learning: A positron emission tomography activation study of eyeblink conditioning. J Neurosci. 1996;12: 4032–40.

    Google Scholar 

  68. Schreurs BG, McIntosh AR, Bahro M, Herscovitch P, Sunderland T, Molchan SE. Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. J Neurophysiol. 1997;77:2153–63.

    PubMed  CAS  Google Scholar 

  69. Timmann D, Gerwig M, Frings M, Maschke M, Kolb FP. Eyeblink conditioning in patients with hereditary ataxia: A one-year follow-up study. Exp Brain Res. 2005;162:332–45.

    PubMed  CAS  Google Scholar 

  70. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25: 3919–31.

    PubMed  CAS  Google Scholar 

  71. Boneau CA. The interstimulus interval and the latency of the conditioned eyelid response. J Exp Psychol. 1958;56: 464–71.

    PubMed  CAS  Google Scholar 

  72. Ebel HC, Prokasy WF. Classical eyelid conditioning as a function of sustained and shifted interstimulus intervals. J Exp Psychol. 1963;65:52–8.

    Google Scholar 

  73. Kehoe EJ, Schreurs BG. Compound-component differentiation as a function of CS-US interval and CS duration in the rabbit’s nictitating membrane response. Ann Learn Behav. 1986;14:144–54.

    Google Scholar 

  74. Kehoe EJ, Macrae M. Fundamental behavioural methods and findings in classical conditioning. In: Moore JW, editor. A neuroscientist’s guide to classical conditioning. New York: Springer; 2001. pp 171–231.

    Google Scholar 

  75. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.

    Google Scholar 

  76. Papka M, Ivry RB, Woodruff-Pak DS. Selective disruption of eyeblink classical conditioning by concurrent tapping. Neuroreport. 1995;6:1493–7.

    PubMed  CAS  Google Scholar 

  77. Woodruff-Pak DS, Jaeger ME. Predictors of eyeblink classical conditioning over the adult age span. Psychol Aging. 1998;13:193–205.

    PubMed  CAS  Google Scholar 

  78. McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26:804–11.

    PubMed  Google Scholar 

  79. Timmann D, Diener HC. Alcoholic cerebellar degeneration. In: Klockgether T, editor. Handbook of ataxia disorders. New York: Marcel Dekker; 2000. pp 571–606.

    Google Scholar 

  80. Steinmetz JE, Tracy JA, Green JT. Classical eyeblink conditioning: Clinical models and applications. Integr Physiol Behav Sci. 2001;36:220–38.

    PubMed  CAS  Google Scholar 

  81. Garcia KS, Mauk MD. Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology. 1998; 37:471–80.

    PubMed  CAS  Google Scholar 

  82. Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res. 1985;60:87–98.

    PubMed  CAS  Google Scholar 

  83. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF. Voxel-based lesion-symptom mapping. Nat Neurosci. 2003;6:448–50.

    PubMed  CAS  Google Scholar 

  84. Attwell PJ, Ivarsson M, Millar L, Yeo CH. Cerebellar mechanisms in eyeblink conditioning. Ann N Y Acad Sci. 2002;978:79–92.

    PubMed  CAS  Google Scholar 

  85. Rescorla RA, Heth CD. Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol Anim Behav Process. 1975;1:88–96.

    PubMed  CAS  Google Scholar 

  86. Schreurs BG. Long-term memory and extinction of the classically conditioned rabbit nictitating membrane response. Learn Motiv. 1993;24:293–302.

    Google Scholar 

  87. Robleto K, Poulos AM, Thompson RF. Brain mechanisms of extinction of the classically conditioned eyeblink response. Learn Mem. 2004; 11:517–24.

    PubMed  Google Scholar 

  88. Medina JF, Nores WL, Mauk MD. Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature. 2002;416:330–3.

    PubMed  CAS  Google Scholar 

  89. Gerwig M, Hajjar K, Frings M, Dimitrova A, Thilmann AF, Kolb FP, Forsting M, Timmann D. Extinction of conditioned eyeblink responses in patients with cerebellar disorders. Neurosci Lett. 2006;406:87–91.

    PubMed  CAS  Google Scholar 

  90. Green JT, Woodruff-Pak DS. Eyeblink classical conditioning: hippocampal formation is for neutral stimulus associations as cerebellum is for association-response. Psychol Bull. 2000;126:138–58.

    PubMed  CAS  Google Scholar 

  91. Gruart A, Guillazo-Blanch G, Fernandez-Mas R, Jimenez-Diaz L, Delgado-Garcia JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.

    PubMed  CAS  Google Scholar 

  92. Woodruff-Pak DS, Lavond DG, Thompson RF. Trace conditioning: abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 1985;348: 249–60.

    PubMed  CAS  Google Scholar 

  93. Kishimoto Y, Kawahara S, Suzuki M, Mori H, Mishina M, Kirino Y. Classical eyeblink conditioning in glutamate receptor subunit delta 2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur J Neurosci. 2001;13:1249–53.

    PubMed  CAS  Google Scholar 

  94. Woodruff-Pak DS, Green JT, Levin SI, Meisler MH. Inactivation of sodium channel Scn8A (Na-sub(v)1.6) in Purkinje neurons impairs learning in Morris water maze and delay but not trace eyeblink classical conditioning. Behav Neurosci. 2006;120:229–40.

    PubMed  Google Scholar 

  95. Kirsch P, Achenbach C, Kirsch M, Heinzmann M, Schienle A, Vaitl D. Cerebellar and hippocampal activation during eyeblink conditioning depends on the experimental paradigm: a MEG study. Neural Plast. 2003;10: 291–301.

    PubMed  Google Scholar 

  96. Clark RE, Squire LR. Awareness and the conditioned eyeblink response. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: Volume I. Applications in humans. Norwell, Massachusetts: Kluwer; 2000. pp 229–51.

    Google Scholar 

  97. McGlinchey-Berroth R, Carrillo MC, Gabrieli JD, Brawn CM, Disterhoft JF. Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav Neurosci. 1997;111:873–82.

    PubMed  CAS  Google Scholar 

  98. Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.

    PubMed  CAS  Google Scholar 

  99. Hacke W, Schaff C, Zeumer H. Orbicularis oculi reflex in computerized tomography verified lesions of the posterior cranial fossa. Fortschr Neurol Psychiatr. 1983;51:313–24.

    Article  PubMed  CAS  Google Scholar 

  100. Gerwig M, Dimitrova A, Maschke M, Kolb FP, Forsting M, Timmann D. Amplitude changes of unconditioned eyeblink responses in patients with cerebellar lesions. Exp Brain Res. 2004;155:341–51.

    PubMed  CAS  Google Scholar 

  101. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  102. Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, et al. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002;17:100–15.

    PubMed  Google Scholar 

  103. Steinmetz JE, Lavond DG, Ivkovich D, Logan CG, Thompson RF. Disruption of classical eyelid conditioning after cerebellar lesions: Damage to a memory trace system or a simple performance deficit? J Neurosci. 1992;12:4403–26.

    PubMed  CAS  Google Scholar 

  104. Bracha V, Webster ML, Winters NK, Irwin KB, Bloedel JR. Effects of muscimol inactivation of the cerebellar interposed-dentate complex on the performance of the nictitating membrane response in the rabbit. Exp Brain Res. 1994;100:453–68.

    PubMed  CAS  Google Scholar 

  105. Molchan SE, Sunderland T, McIntosh AR, Herscovitch O, Schreurs BG. A functional anatomical study of associative learning in humans. Proc Natl Acad Sci USA. 1994; 91:8122–6.

    PubMed  CAS  Google Scholar 

  106. Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learningand expectation-related changes in the human brain during motor learning. J Neurophysiol. 2000;84:3026–35.

    PubMed  CAS  Google Scholar 

  107. Knuttinen MG, Parrish TB, Weiss C, LaBar KS, Gitelman DR, Power JM, Mesulam MM, Disterhoft JF. Electromyography as a recording system for eyeblink conditioning with functional magnetic resonance imaging. Neuroimage. 2002;17:977–87.

    PubMed  Google Scholar 

  108. Yeo CH, Lobo DH, Baum A. Acquisition of a new-latency conditioned nictitating membrane response-major, but not complete, dependence on the ipsilateral cerebellum. Learn Mem. 1997;3:557–77.

    PubMed  CAS  Google Scholar 

  109. Miller MJ, Chen NK, Li L, Tom B, Weiss C, Disterhoft JF, Wyrwicz AM. fMRI of the conscious rabbit during unilateral classical eyeblink conditioning reveals bilateral cerebellar activation. J Neurosci. 2003;23:11753–8.

    PubMed  CAS  Google Scholar 

  110. Woody CD. Control of motor behaviour acquisition by cortical activity potentiated by decreases in a Potassium Acurrent that increase neural excitability. In: Bloedel JR, Ebner TJ, Wise SP, editors. The acquisition of motor behavior in vertebrates. Cambridge, MA: The MIT Press; 1996. pp 205–20.

    Google Scholar 

  111. Powell DA, Buchanan SL, Gibbs CM. Role of the prefrontal-thalamic axis in classical conditioning. Prog Brain Res. 1990;85:433–65.

    Article  PubMed  CAS  Google Scholar 

  112. McIntosh AR, Schreurs BR. Functional networks underlying human eyeblink conditioning. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: Volume I. Applications in humans. Norwell, Massachusetts: Kluwer; 2000. pp 51–69.

    Google Scholar 

  113. Snider RS, Stowell A. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol. 1944;7:331–57.

    Google Scholar 

  114. Miles TS, Wiesendanger M. Climbing fibre inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and the SI face area of the cerebral cortex in the cat. J Physiol. 1975;245:425–45.

    PubMed  CAS  Google Scholar 

  115. Daum I, Schugens MM, Breitenstein C, Topka H, Spieker S. Classical eyeblink conditioning in Parkinson’s disease. Mov Disord. 1996;11:639–46.

    PubMed  CAS  Google Scholar 

  116. Woodruff-Pak DS, Papka ME. Huntington’s disease and eyeblink classical conditioning: normal learning but abnormal timing. J Int Neuropsychol Soc. 1996;2:323–34.

    PubMed  CAS  Google Scholar 

  117. McGlinchey-Berroth R. Eyeblink classical conditioning in amnesia. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: Volume I, Applications in humans. Kluwer, Norwell, MA, 2000. p. 205–27.

    Google Scholar 

  118. Kitazawa S. Neurobiology: Ready to unlearn. Nature. 2002;416:270–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerwig, M., Kolb, F.P. & Timmann, D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum 6, 38–57 (2007). https://doi.org/10.1080/14734220701225904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701225904

Key words

Navigation