Skip to main content

Advertisement

Log in

The attentive cerebellum — myth or reality?

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Based on the discovery of significant cerebellar projections into associative cortices and the observation of cerebellar abnormalities in autistic children, the concept has been put forward that the cerebellum might contribute to cognitive functions including attention. Specifically, a deficit analogous to motor dysmetria has been envisaged as a consequence of cerebellar damage-the ‘dysmetria of attention’. This paper provides a review of patient studies and imaging studies which have been performed so far in order to test this concept. Although several sudies report on attention deficits of patients with cerebellar damage, a closer look at the specific paradigms used reveals that disturbances have only been observed consistently for tasks involving significant oculomotor, motor, and/or working memory demands. Likewise, cerebellar activations in imaging studies on attention seem to reflect oculomotor or other motor behavior rather than true involvement in attention. Both attempts have failed so far to consistently reveal cerebellar involvement in attention when confounding influences were controlled. We, therefore, conclude that the concept of attentional dysmetria as a consequence of cerebellar damage is not adequately supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Treue S. Visual attention: the where, what, how and why of saliency. Curr Biol. 2003;13:428–32.

    Article  CAS  Google Scholar 

  2. Thier P, Haarmeier T, Ignashchenkova A. The functional architecture of attention. Curr Biol. 2002;12(5):R158–62.

    Article  Google Scholar 

  3. Parasuraman R, Warm JS, See JE. Brain systems of vigilance. In: Parasuranam R, editor. The attentive brain. Cambridge: MIT Press, 1998. pp 221–56.

    Google Scholar 

  4. Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Ann Rev Neurosci. 2000;23:315–41.

    Article  PubMed  CAS  Google Scholar 

  5. Ignashchenkova A, Dicke PW, Haarmeier T, Thier P. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nature Neurosci. 2004; 7(l):56–64.

    Article  PubMed  CAS  Google Scholar 

  6. Müller JR, Philiastides MG, Newsome WT. Microstimulation of the superior colliculus focuses attention without moving the eyes. PNAS. 2005;102(3):524–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type l. J Neurosci. 1999;19:1446–63.

    PubMed  CAS  Google Scholar 

  8. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003; 10:8432–44.

    Google Scholar 

  9. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    Article  PubMed  CAS  Google Scholar 

  10. Middleton FA, Strick PL. Dentate output channels: Motor and cognitive components. Prog Brain Res. 1997;114: 555–68.

    Google Scholar 

  11. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    PubMed  CAS  Google Scholar 

  12. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus and cerebellum. J Neurosci. 2001; 21:6283–91.

    PubMed  CAS  Google Scholar 

  13. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.

    PubMed  CAS  Google Scholar 

  14. Courchesne E. Neuroanatomic imaging in autism. Pediatrics. 1991;87:781–90.

    PubMed  CAS  Google Scholar 

  15. Rizzolatti G, Riggio L, Dascola I, Umilta C. Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia. 1987;25(1A):31–40.

    Article  PubMed  CAS  Google Scholar 

  16. Deubel H, Schneider WX. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Res. 1996;36(12):1827–37.

    Article  PubMed  CAS  Google Scholar 

  17. Moore T, Armstrong KM. Selective gating of visual signals by microstimulation of frontal cortex. Nature. 2003;421:370–3.

    Article  PubMed  CAS  Google Scholar 

  18. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: Saccades. J Neurophysiol. 1998;80(4):1911–31.

    PubMed  CAS  Google Scholar 

  19. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.

    PubMed  CAS  Google Scholar 

  20. Akshoomoff NA, Courchesne E. A new role for the cerebellum in cognitive operations. Behav Neurosci. 1992;106(5): 731–8.

    Article  PubMed  CAS  Google Scholar 

  21. Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, James HE, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108(5):848–65.

    Article  PubMed  CAS  Google Scholar 

  22. Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand. 2000;102(6):363–70.

    Article  PubMed  CAS  Google Scholar 

  23. Reitan RM. Validity of the trailmaking test as an indication of organic brain damage. Perceptual Motor Skills. 1958;8: 271–6.

    Article  Google Scholar 

  24. Posner MI. Orienting of attention. Quart J Experim Psychol. 1980;32:3–25.

    Article  CAS  Google Scholar 

  25. Thier P, Haarmeier T, Treue S, Barash S. Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain. 1999;122:2133–46.

    Article  PubMed  Google Scholar 

  26. Helmuth LL, Ivry RB, Shimizu N. Preserved performance by cerebellar patients on tests of word generation, discrimination learning, and attention. Learning Memory. 1997;3(6): 456–74.

    Article  PubMed  CAS  Google Scholar 

  27. Ravizza SM, Ivry RB. Comparison of the basal ganglia and cerebellum in shifting attention. J Cognit Neurosci. 2001;13(3):285–97.

    Article  CAS  Google Scholar 

  28. Schoch B, Gorissen B, Richter S, Ozimek A, Kaiser O, Dimitrova A, Regel JP, Wieland R, Hovel M, Gizewski E, Timmann D. Do children with focal cerebellar lesions show deficits in shifting attention? J Neurophysiol. 2004;92(3): 1856–66.

    Article  PubMed  CAS  Google Scholar 

  29. Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41(11): 1452–60.

    Article  PubMed  Google Scholar 

  30. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol, Neurosurg Psychiatry. 2004;75(11):1524–31.

    Article  CAS  Google Scholar 

  31. Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19(13):5632–43.

    PubMed  CAS  Google Scholar 

  32. Dimitrov M, Grafman J, Kosseff P, Wachs J, Alway D, Higgins J, Litvan I, Lou JS, Hallett M. Preserved cognitive processes in cerebellar degeneration. Behav Brain Res. 1996;79(l-2):131–5.

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi S, Tsuchiya H, Kobayashi S. Visuospatial attention shift and motor responses in cerebellar disorders. J Cognit Neurosci. 1998;10(l):95–107.

    Article  CAS  Google Scholar 

  34. Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain. 2005;128(7):1525–35.

    Article  PubMed  Google Scholar 

  35. Dietrich H, Dicke PW, Catz N, Glickstein M, Haarmeier T, Thier P. Lesions of rhesus monkey posterior vermis cause deficits in visual motion perception. Soc Neurosc. 2003;29: 882.7. (Abstr.).

    Google Scholar 

  36. Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: A meta-analysis. Neuroimage. 2004;22(4): 1679–93.

    Article  PubMed  Google Scholar 

  37. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.

    Article  PubMed  CAS  Google Scholar 

  38. Le TH, Pardo JV, Hu X. 4 T-fMRI study of nonspatial shifting of selective attention: Cerebellar and parietal contributions. J Neurophysiol. 1998;79(3):1535–48.

    PubMed  CAS  Google Scholar 

  39. Rosen AC, Rao SM, Caffarra P, Scaglioni A, Bobholz JA, Woodley SJ, Hammeke TA, Cunningham JM, Prieto TE, Binder JR. Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. J Cogn Neurosci. 1999; 11(2):135–52.

    Article  PubMed  CAS  Google Scholar 

  40. Jovicich J, Peters RJ, Koch C, Braun J, Chang L, Ernst T. Brain areas specific for attentional load in a motion-tracking task. J Cogn Neurosci. 2001;13:1048–58.

    Article  PubMed  CAS  Google Scholar 

  41. Nebel K, Wiese H, Stude P, de Greiff A, Diener HC, Keidel M. On the neural basis of focused and divided attention. Brain Res Cogn Brain Res. 2005;25(3):760–76.

    Article  PubMed  Google Scholar 

  42. Konen CS, Kleiser R, Scitz RJ, Bremmer F. An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res. 2005;165: 203–16.

    Article  PubMed  Google Scholar 

  43. Dieterich M, Bucher SF, Seelos KC, Brandt T. Cerebellar activation during optokinetic stimulation and saccades. Neurology. 2000;54:148–55.

    PubMed  CAS  Google Scholar 

  44. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL. A common network of functional areas for attention and eye movments. Neuron. 1998;21:761–73.

    Article  PubMed  CAS  Google Scholar 

  45. Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M. A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain. 1999;122:1093–1106.

    Article  PubMed  Google Scholar 

  46. Bischoff-Grethe A, Ivry RB, Grafton ST. Cerebellar involvement in response reassignment rather than attention. J Neurosci. 2002;22(2):546–53.

    PubMed  CAS  Google Scholar 

  47. Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD. Functional localization of the system for visuospatial attention using positron emission tomography. Brain. 1997;120:515–33.

    Article  PubMed  Google Scholar 

  48. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:309–320.

    Google Scholar 

  49. Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(l):46–59.

    Article  PubMed  Google Scholar 

  50. Malm J, Kristensen B, Karlsson T, Carlberg B, Fagerlund M, Olsson T. Cognitive impairment in young adults with infratentorial infarcts. Neurology. 1998;51(2):433–40.

    PubMed  CAS  Google Scholar 

  51. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    Article  PubMed  Google Scholar 

  52. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  53. Globas C, Bösch S, Zühlke C, Daum I, Dichgans J, Bürk K. The cerebellum and cognition: Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(12):1482–7.

    Article  PubMed  CAS  Google Scholar 

  54. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63: 2132–5.

    PubMed  Google Scholar 

  55. Hokkanen LSK, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13(2):161–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haarmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haarmeier, T., Thier, P. The attentive cerebellum — myth or reality?. Cerebellum 6, 177–183 (2007). https://doi.org/10.1080/14734220701286187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701286187

Key words

Navigation