Analog of gravitational force in hyperbolic metamaterials

Igor I. Smolyaninov
Phys. Rev. A 88, 033843 – Published 25 September 2013

Abstract

Subwavelength confinement of light in nonlinear hyperbolic metamaterials due to formation of spatial solitons has attracted much recent attention because of its seemingly counterintuitive behavior. In order to achieve self-focusing in a hyperbolic wire medium, a nonlinear self-defocusing Kerr medium must be used as a dielectric host. Here we demonstrate that this behavior finds a natural explanation in terms of the analog of gravity. A wave equation describing the propagation of extraordinary light inside hyperbolic metamaterials exhibits (2+1)-dimensional Lorentz symmetry. The role of time in the corresponding effective three-dimensional Minkowski space-time is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect “bends” this space-time resulting in effective gravitational force between extraordinary photons. In order for the effective gravitational constant to be positive, a negative self-defocusing Kerr medium must be used as a host. If gravitational self-interaction is strong enough, the spatial soliton may collapse into a black hole analog.

  • Figure
  • Figure
  • Received 5 August 2013

DOI:https://doi.org/10.1103/PhysRevA.88.033843

©2013 American Physical Society

Authors & Affiliations

Igor I. Smolyaninov

  • Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 3 — September 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×