Skip to main content
Log in

Theory for serial correlations of interevent intervals

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We consider stochastic systems with m internal states in which discrete events (e.g. hopping events between metastable states or firing events of neurons) occur at a state-dependent rate. Transitions between states are possible with certain fixed rates. Because the state immediately after an event depends in general on the history of the process, the intervals between two consecutive events (“residence times”) are correlated among each other, i.e. the residence time sequence constitutes a nonrenewal process. We construct a general kinetic scheme that accounts for the number of events at a given time. The count statistics is used to derive a general expression for the correlation coefficient of residence times with a certain lag. We apply the theoretical result to a simple neuron model with discrete threshold states leading to negative interspike interval correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. Lett. 74, 1052 (1995)

    Article  ADS  Google Scholar 

  2. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  3. M.H. Choi, R.F. Fox, P. Jung, Phys. Rev. E 57, 6335 (1998)

    Article  ADS  Google Scholar 

  4. A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier, Phys. Rev. E 58, 7118 (1998)

    Article  ADS  Google Scholar 

  5. A. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. A. Longtin, Phys. Rev. E 55, 868 (1997)

    Article  ADS  Google Scholar 

  7. B. Lindner, L. Schimansky-Geier, Phys. Rev. E 60, 7270 (1999)

    Article  ADS  Google Scholar 

  8. B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  9. O.V. Ushakov, H.J. Wünsche, F. Henneberger, I.A. Khovanov, L. Schimansky-Geier, M.A. Zaks, Phys. Rev. Lett. 95, 123903 (2005)

    Article  ADS  Google Scholar 

  10. A. Neiman, L. Schimansky-Geier, A. Cornell-Bell, F. Moss, Phys. Rev. Lett. 83, 4896 (1999)

    Article  ADS  Google Scholar 

  11. J.A. Freund, A.B. Neiman, L. Schimansky-Geier, Europhys. Lett. 50, 8 (2000)

    Article  ADS  Google Scholar 

  12. R. Rozenfeld, J.A. Freund, A. Neiman, L. Schimansky-Geier, Phys. Rev. E 64, 051107 (2001)

    Article  ADS  Google Scholar 

  13. L. Callenbach, P. Hänggi, S.J. Linz, J.A. Freund, L. Schimansky-Geier, Phys. Rev. E 65, 051110 (2002)

    Article  ADS  Google Scholar 

  14. T. Prager, L. Schimansky-Geier, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 71, 031112 (2005)

    MathSciNet  ADS  Google Scholar 

  15. D.R. Cox, Renewal Theory (Methuen, London, 1962)

  16. S.B. Lowen, M.C. Teich, J. Acoust. Soc. Am. 92, 803 (1992)

    Article  ADS  Google Scholar 

  17. R. Ratnam, M.E. Nelson, J. Neurosci. 20, 6672 (2000)

    Google Scholar 

  18. M.J. Chacron, A. Longtin, M. St-Hilaire, L. Maler, Phys. Rev. Lett. 85, 1576 (2000)

    Article  ADS  Google Scholar 

  19. Y.H. Liu, X.J. Wang, J. Comp. Neurosci. 10, 25 (2001)

    Article  Google Scholar 

  20. B. Lindner, Phys. Rev. E 69, 022901 (2004)

    Article  ADS  Google Scholar 

  21. T.A. Engel, L. Schimansky-Geier, A. Herz, S. Schreiber, I. Erchova, J. Neurophysiol. 100, 1576 (2008)

    Article  Google Scholar 

  22. M.P. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Aertsen, S. Grun, S. Rotter, Neurocomp. 70, 1717 (2007)

    Article  Google Scholar 

  23. A. Neiman, D.F. Russell, Phys. Rev. Lett. 86, 3443 (2001)

    Article  ADS  Google Scholar 

  24. S. Bahar, J. Kantelhardt, A. Neiman, H. Rego, D. Russell, L. Wilkens, A. Bunde, F. Moss, Europhys. Lett. 56, 454 (2001)

    Article  ADS  Google Scholar 

  25. A. Neiman, D.F. Russell, Phys. Rev. E 71, 061915 (2005)

    Article  ADS  Google Scholar 

  26. T.A. Engel, B. Helbig, D.F. Russell, L. Schimansky-Geier, A. Neiman, Phys. Rev. E 80, 021919 (2009)

    Article  ADS  Google Scholar 

  27. J.W. Middleton, M.J. Chacron, B. Lindner, A. Longtin, Phys. Rev. E 68, 021920 (2003)

    Article  ADS  Google Scholar 

  28. T. Schwalger, L. Schimansky-Geier, Phys. Rev. E 77, 031914 (2008)

    Article  ADS  Google Scholar 

  29. J. Benda, A.V.M. Herz, Neural Comp. 15, 2523 (2003)

    Article  MATH  Google Scholar 

  30. M.J. Chacron, K. Pakdaman, A. Longtin, Neural Comp. 15, 253 (2003)

    Article  MATH  Google Scholar 

  31. M.J. Chacron, A. Longtin, L. Maler, J. Neurosci. 21, 5328 (2001)

    Google Scholar 

  32. M.J. Chacron, B. Lindner, A. Longtin, Phys. Rev. Lett. 92, 080601 (2004)

    Article  ADS  Google Scholar 

  33. B. Lindner, T. Schwalger, Phys. Rev. Lett. 98, 210603 (2007)

    Article  ADS  Google Scholar 

  34. T. Schwalger, B. Lindner, Phys. Rev. E 78, 021121 (2008)

    Article  ADS  Google Scholar 

  35. J.A. McFadden, J. Roy. Stat. Soc. B 24, 364 (1962)

    MathSciNet  Google Scholar 

  36. X.J. Wang, J. Neurophysiol. 79, 1549 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwalger, T., Lindner, B. Theory for serial correlations of interevent intervals. Eur. Phys. J. Spec. Top. 187, 211–221 (2010). https://doi.org/10.1140/epjst/e2010-01286-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01286-y

Keywords

Navigation