Skip to main content

Advertisement

Log in

Regulation of monoamine transporters: Influence of psychostimulants and therapeutic antidepressants

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Synaptic neurotransmission in the central nervous system (CNS) requires the precise control of the duration and the magnitude of neurotransmitter action at specific molecular targets. At the molecular level, neurotransmitter signaling is dynamically regulated by a diverse set of macromolecules including biosynthetic enzymes, secretory proteins, ion channels, pre- and postsynaptic receptors and transporters. Monoamines, 5-hydroxytryptamine or serotonin (5-HT), norepinephrine (NE), and dopamine (DA) play an important modulatory role in the CNS and are involved in numerous physiological functions and pathological conditions. Presynaptic plasma membrane transporters for 5-HT (SERT), NE (NET), and DA (DAT), respectively, control synaptic actions of these monoamines by rapidly clearing the released amine. Monoamine transporters are the sites of action for widely used antidepressants and are high affinity molecular targets for drugs of abuse including cocaine, amphetamine, and 3,4-methylenedioxymetamphetamine (MDMA) “Ecstasy”. Monoamine transporters also serve as molecular gateways for neurotoxins. Emerging evidence indicates that regulation of transporter function and surface expression can be rapidly modulated by “intrinsic” transporter activity itself, and antidepressant and psychostimulant drugs that block monoamine transport have a profound effect on transporter regulation. Therefore, disregulations in the functioning of monoamine transporters may underlie many disorders of transmitter imbalance such as depression, attention deficit hyperactivity disorder, and schizophrenia. This review integrates recent progress in understanding the molecular mechanisms of monoamine transporter regulation, in particular, posttranscriptional regulation by phosphorylation and trafficking linked to cellular protein kinases, protein phosphatases, and transporter interacting proteins. The review also discusses the possible role of psychostimulants and antidepressants in influencing monoamine transport regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heinz A, Mann K, Weinberger DR, Goldman D. Serotonergic dysfunction, negative mood states, and response to alcohol.Alcohol Clin Exp Res. 2001;25:487–495.

    Article  PubMed  CAS  Google Scholar 

  2. Hahn MK, Blakely RD. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders.Pharmacogenomics J. 2002;2:217–235.

    Article  PubMed  CAS  Google Scholar 

  3. Rocha BA, Fumagalli F, Gainetdinov RR, et al. Cocaine self-administration in dopamine-transporter knockout mice.Nat Neurosci. 1998;1:132–137.

    Article  PubMed  CAS  Google Scholar 

  4. Sora I, Hall FS, Andrews AM, et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference.Proc Natl Acad Sci USA. 2001;98:5300–5305.

    Article  PubMed  CAS  Google Scholar 

  5. Flattem NL, Blakely RD. Modified structure of the human serotonin transporter promoter.Mol Psychiatry 2000;5:110–115.

    Article  PubMed  CAS  Google Scholar 

  6. McCauley JL, Olson LM, Dowd M, et al. Linkage and association analysis at the serotonin transporter (SLC6A4) locus in a rigid-compulsive subset of autism.Am J Med Genet B Neuropsychiatr Genet. 2004;127:104–112.

    Article  PubMed  CAS  Google Scholar 

  7. Ozaki N, Goldman D, Kaye WH, et al. Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype.Mol Psychiatry 2003;8:895–936.

    Article  Google Scholar 

  8. Kilic F, Murphy DL, Rudnick G. A human serotonin transporter mutation causes constitutive activation of transport activity.Mol Pharmacol. 2003;64:440–446.

    Article  PubMed  CAS  Google Scholar 

  9. Astier B, Van Bockstaele EJ, Aston-Jones G, Pieribone VA. Anatomical evidence for multiple pathways leading from the rostral ventrolateral medulla (nucleus paragigantocellularis) to the locus coeruleus in rat.Neurosci Lett. 1990;118:141–146.

    Article  PubMed  CAS  Google Scholar 

  10. Pavcovich LA, Cancela LM, Volosin M, Molina VA, Ramirez OA. Chronic stress-induced changes in locus coeruleus neuronal activity.Brain Res Bull. 1990;24:293–296.

    Article  PubMed  CAS  Google Scholar 

  11. Holden JE, Naleway E. Microinjection of carbachol in the lateral hypothalamus produces opposing actions on nociception mediated by alpha(1)- and alpha(2)-adrenoceptors.Brain Res. 2001;911:27–36.

    Article  PubMed  CAS  Google Scholar 

  12. Jasmin L, Tien D, Weinshenker D. The NK1 receptor mediates both the hyperalgesia and the resistance to morphine in mice lacking noradrenaline.Proc Natl Acad Sci USA. 2002;99:1029–1034.

    Article  PubMed  CAS  Google Scholar 

  13. Axelrod J, Kopin IJ. The uptake, storage, release, and metabolism of noradrenaline in sympathetice nerves.Prog Brain Res. 1969;31:21–32.

    Article  PubMed  CAS  Google Scholar 

  14. Iversen LL. Uptake processes for biogenic amines. In: Iversen I, ed.Handbook of Psychopharmacology. 3rd ed. New York, NY: Prenum Press; 1978;381–442.

    Google Scholar 

  15. Pacholczyk T, Blakely RD, Amara SG. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.Nature. 1991;350:350–354.

    Article  PubMed  CAS  Google Scholar 

  16. Amara SG, Arriza JL. Neurotransmitter transporters: three distinct gene families.Curr Opin Neurobiol. 1993;3:337–344.

    Article  PubMed  CAS  Google Scholar 

  17. Klimek V, Stockmeier C, Overholser J, et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression.J Neurosci. 1997;17:8451–8458.

    PubMed  CAS  Google Scholar 

  18. Ganguly PK, Dhalla KS, Imes IR, Beamish RE, Dhall NS. Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy.Circ Res. 1986;59:684–693.

    PubMed  CAS  Google Scholar 

  19. Merlet P, Dubois-Rande J-L, Adnot S, et al. Myocardial b-adrenergic desensitization and neuronal norepinephrine uptake function in idiopathic dilated cardiomyopathy.J Cardiovasc Pharmacol. 1992;19:10–16.

    Article  PubMed  CAS  Google Scholar 

  20. Robertson D, Flattem N, Tellioglu T, et al., Familial orthostatic tachycardia due to norepinephrine transporter deficiency.Ann N Y Acad Sci. 2001;940:527–543.

    Article  PubMed  CAS  Google Scholar 

  21. Xu F, Gainetdinov RR, Wetsel WC, et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants.Nat Neurosci. 2000;3:465–471.

    Article  PubMed  CAS  Google Scholar 

  22. Thompson AC, Zapata A, Justice JB, Vaughan RA, Sharpe LG, Shippenberg TS. Kappa-opioid receptor activation modifies dopamine uptake in the nucleus accumbens and opposes the effects of cocaine.J Neurosci. 2000;20:9333–9340.

    PubMed  CAS  Google Scholar 

  23. Hahn MK, Robertson D, Blakely RD. A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters.J Neurosci. 2003;23:4470–4478.

    PubMed  CAS  Google Scholar 

  24. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence.Annu Rev Pharmacol Toxicol. 2001;41:237–260.

    Article  PubMed  CAS  Google Scholar 

  25. Greengard P. The neurobiology of slow synaptic transmission.Science. 2001;294:1024–1030.

    Article  PubMed  CAS  Google Scholar 

  26. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.J Neurosci. 1995;15:4102–4108.

    PubMed  CAS  Google Scholar 

  27. Sora I, Wichems C, Takahashi N, et al. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice.Proc Natl Acad Sci USA. 1998;95:7699–7704.

    Article  PubMed  CAS  Google Scholar 

  28. Rioux A, Fabre V, Lesch KP, et al. Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter.Neurosci Lett. 1999;262:113–116.

    Article  PubMed  CAS  Google Scholar 

  29. Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G. Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene.J Neurosci. 2001;21:1–4.

    PubMed  Google Scholar 

  30. Kula NS, Baldessarini RJ. Lack of increase in dopamine transporter binding or functions in rat brain tissue after treatment with blockers of neuronal uptake of dopamine.Neuropharmacology. 1991;30:89–92.

    Article  PubMed  CAS  Google Scholar 

  31. Giros B, El Mestikawy S, Godinot N, et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter.Mol Pharmacol. 1992;42:383–390.

    PubMed  CAS  Google Scholar 

  32. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.Nature. 1996;379:606–612.

    Article  PubMed  CAS  Google Scholar 

  33. Eichelman BS. Neurochemical and psychopharmacologic aspects of aggressive behavior.Annu Rev Med. 1990;41:149–158.

    PubMed  CAS  Google Scholar 

  34. Comings DE. Clinical and molecular genetics of ADHD and Tourette syndrome: two related polygenic disorders.Ann NY Acad Sci. 2001;931:50–83.

    Article  PubMed  CAS  Google Scholar 

  35. Meyer JH, Goulding VS, Wilson AA, Hussey D, Christensen BK, Houle S. Bupropion occupancy of the dopamine transporter is low during clinical treatment.Psychopharmacology (Berl). 2002;163:102–105.

    Article  CAS  Google Scholar 

  36. Miller GM II, De La Garza RD II, Novak MA, Madras BK. Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: implications for association with attention deficit hyperativity disorder and other neuropsychiatric disorders.Mol Psychiatry. 2001;6:50–58.

    Article  PubMed  CAS  Google Scholar 

  37. Lin Z, Uhl GR. Dopamine transporter mutants with cocaine resistance and normal dopamine uptake provide targets for cocaine antagonism.Mol Pharmacol. 2002;61:885–891.

    Article  PubMed  CAS  Google Scholar 

  38. Reith MEA, Meisler BE, Sershen H, Lajtha A, Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior.Biochem Pharmacol. 1986;35:1123–1129.

    Article  PubMed  CAS  Google Scholar 

  39. Seiden LS, Sabol KE, Ricaurte GA. Amphetamine: effects on catecholamine systems and behavior.Annu Rev Pharmacol Toxicol. 1993;33:639–677.

    Article  PubMed  CAS  Google Scholar 

  40. Bengel D, Murphy DL, Andrews AM, et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxym etamphetamine (“ecstasy”) in serotonin transporter-deficient mice.Mol Pharmacol. 1998;53:649–655.

    PubMed  CAS  Google Scholar 

  41. Rocha BA, Scearce-Levie K, Lucas JJ, et al. Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor.Nature. 1998;393:175–178.

    Article  PubMed  CAS  Google Scholar 

  42. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction.Science. 1997;278:58–63.

    Article  PubMed  CAS  Google Scholar 

  43. Pierce RC, Kalivas PW. Repeated cocaine modifies the mechanism by which amphetamine releases dopamine.J Neurosci. 1997;17:3254–3261.

    PubMed  CAS  Google Scholar 

  44. Cases O, Lebrand C, Giros B et al. Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs.J Neurosci. 1998;18:6914–6927.

    PubMed  CAS  Google Scholar 

  45. Pan Y, Gembom E, Peng W, Lesch KP, Mossner R, Simantov R. Plasticity in serotonin uptake in primary neuronal cultures of serotonin transporter knockout mice.Brain Res Dev Brain Res. 2001;126:125–129.

    Article  PubMed  CAS  Google Scholar 

  46. Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines.J Neurosci. 2002;22:389–395.

    PubMed  CAS  Google Scholar 

  47. Ramamoorthy S, Cool DR, Mahesh VB, et al. Regulation of the human serotonin transporter: cholera toxin-induced stimulation of serotonin uptake in human placental choriocarcinoma cells is accompanied by increased serotonin transporter mRNA levels and serotonin transporter-specific ligand binding.J Biol Chem. 1993;268:21626–21631.

    PubMed  CAS  Google Scholar 

  48. Ramamoorthy JD, Ramamoorthy S, Papapetropoulos A, Catravas JD, Leibach FH, Ganapathy V. Cyclic AMP-independent up-regulation of the human serotonin transporter by staurosporine in choriocarcinoma cells.J Biol Chem. 1995;270:17189–17195.

    Article  PubMed  CAS  Google Scholar 

  49. Ramamoorthy S, Ramamoorthy JD, Prasad P, et al. Regulation of the human serotonin transporter by interleukin-1b.Biochem Biophys Res Commun. 1995;216:560–567.

    Article  PubMed  CAS  Google Scholar 

  50. Blakely RD, Ramamoorthy S, Qian Y, Schroeter S, Bradley C. Regulation of antidepressant-sensitive serotonin transporters. In: Reith MEA, ed.Neurotransmitter Transporters: Structure, Function, and Regulation. Totowa, NJ: Humana Press; 1997:29–72.

    Google Scholar 

  51. Bradley CC.Structure, Regulation, and Expression of the Human Serotonin Transporter Gene [Doctoral dissertation]. [thesis], Atlanta, GA: Anatomy and Cell Biology, Emory University; 1998.

    Google Scholar 

  52. Ramamoorthy S.Regulation of monoamine transporters: Regulated phosphorylation, dephosphorylation, and trafficking. Totowa, NJ: Humana Press Inc; 2002.

    Google Scholar 

  53. Wakade AR, Wakade TD, Poosch M, Bannon MJ. Noradrenaline transport and transporter mRNA of rat chromaffin cells are controlled by dexamethasone and nerve growth factor.J Physiol. 1996;494:67–75.

    PubMed  CAS  Google Scholar 

  54. Figlewicz DP, Szot P, Israel PA, Payne C, Dorsa DM. Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus.Brain Res. 1993;602:161–164.

    Article  PubMed  CAS  Google Scholar 

  55. Meyer JS, Shearman LP, Collins LM. Monoamine transporters and the neurobehavioral teratology of cocaine.Pharmacol Biochem Behav. 1996;55:585–593.

    Article  PubMed  CAS  Google Scholar 

  56. Ikeda T, Kitayama S, Morita K, Dohi T. Nerve growth factor down-regulates the expression of norepinephrine transporter in rat pheochromocytoma (PC12) cells.Brain Res Mol Brain Res. 2001;86:90–100.

    Article  PubMed  CAS  Google Scholar 

  57. Fang Y, Ronnekleiv OK. Cocaine upregulates the dopamine transporter in fetal rhesus monkey brain.J Neurosci. 1999;19:8966–8978.

    PubMed  CAS  Google Scholar 

  58. Shearman LP, Meyer JS. Cocaine up-regulates norepinephrine transporter binding in the rat placenta.Eur J Pharmacol. 1999;386:1–6.

    Article  PubMed  CAS  Google Scholar 

  59. Macey DJ, Smith HR, Nader MA, Porrino LJ. Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey.J Neurosci. 2003;23:12–16.

    PubMed  CAS  Google Scholar 

  60. Li LB, Chen N, Ramamoorthy S, et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter.J Biol Chem. 2004;279:21012–21020.

    Article  PubMed  CAS  Google Scholar 

  61. Vaughan RA, Huff RA, Uhl GR, Kuhar MJ. Protein kinase C-mediated phosphorylation and functional regulation of dopamine transporters in striatal synaptosomes.J Biol Chem. 1997;272:15541–15546.

    Article  PubMed  CAS  Google Scholar 

  62. Ramamoorthy S, Giovanetti E, Qian Y, Blakely RD. Phosphorylation and regulation of antidepressant-sensitive serotonin transporters.J Biol Chem. 1998;273:2458–2466.

    Article  PubMed  CAS  Google Scholar 

  63. Jayanthi LD, Samuvel DJ, Ramamoorthy S. Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters: evidence for localization in lipid rafts and lipid raft mediated internalization.J Biol Chem. 2004;279:19315–19326.

    Article  PubMed  CAS  Google Scholar 

  64. Apparsundaram S, Galli A, DeFelice LJ, Hartzell HC, Blakely RD. Acute regulation of norepinephrine transport. I. PKC-linked muscarinic receptors influence transport capacity and transporter density in SK-N-SH cells.J Pharmacol Exp Ther. 1998;287:733–743.

    PubMed  CAS  Google Scholar 

  65. Apparsundaram S, Schroeter S, Blakely RD. Acute regulation of norepinephrine transport. II. PKC-modulated surface expression of human norepinephrine transporter proteins.J Pharmacol Exp Ther. 1998;287:744–751.

    PubMed  CAS  Google Scholar 

  66. Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, Blakely RD. Cocaine and antidepressant-sensitive biogenic amine transporters exist in regulated complexes with protein phosphatase 2A.J Neurosci. 2000;20:7571–7578.

    PubMed  CAS  Google Scholar 

  67. Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD. Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression.J Neurosci. 1997;17:45–57.

    PubMed  CAS  Google Scholar 

  68. Kitayama S, Dohi T, Uhl G. Phorbol esters alter functions of the expressed dopamine transporter.Eur J Pharmacol. 1994;268:115–119.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang L, Coffey LL, Reith MEA. Regulation of the functional activity of the human dopamine transporter by protein kinase C.Biochem Pharmacol. 1997;53:677–688.

    Article  PubMed  CAS  Google Scholar 

  70. Daniels G, Amara SG. Regulation trafficking of the human dopamine transporter clathrin-mediated internalization and lysosomal degradation in response to phorbol esters.J Biol Chem. 1999;274:35794–35801.

    Article  PubMed  CAS  Google Scholar 

  71. Melikian HE, Buckley KM. Membrane trafficking regulates the activity of the human dopamine transporter.J Neurosci. 1999;19:7699–7710.

    PubMed  CAS  Google Scholar 

  72. Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines.J Biol Chem. 2003;278:22168–22174.

    Article  PubMed  CAS  Google Scholar 

  73. Sorkina T, Hoover BR, Zahniser NR, Sorkin A. Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism.Traffic. 2005;6:157–170.

    Article  PubMed  CAS  Google Scholar 

  74. Holton KL, Loder MK, Melikian HE. Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization.Nat Neurosci. 2005;8:881–888.

    PubMed  CAS  Google Scholar 

  75. Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression.J Neurosci. 2005;25:29–41.

    Article  PubMed  CAS  Google Scholar 

  76. Ramamoorthy S, Prasa PD, Kulanthaivel P, Leibach FH, Blakely RD, Ganapathy V. Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncitiotrophoblast.Biochemistry. 1993;32:1346–1353.

    Article  PubMed  CAS  Google Scholar 

  77. Ramamoorthy JD, Ramamoorthy S, Leibach FH, Ganapathy V. Human placental monoamine transporters as targets for amphetamines.Am J Obstet Gynecol. 1995;173:1782–1787.

    Article  PubMed  CAS  Google Scholar 

  78. Jayanthi LD, Prasad PD, Ramamoorthy S, Mahesh VB, Leibach FH, Ganapathy V. Sodium- and chloride-dependent, cocaine-sensitive, high-affinity binding of nisoxetine to the human placental norepinephrine transporter.Biochemistry. 1993;32:12178–12185.

    Article  PubMed  CAS  Google Scholar 

  79. Chamberlain LH, Gould GW. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes.J Biol Chem. 2002;277:49750–49754.

    Article  PubMed  CAS  Google Scholar 

  80. Simons K, Toomre D. Lipid rafts and signal transduction.Nat Rev Mol Cell Biol. 2000;1:31–39.

    Article  PubMed  CAS  Google Scholar 

  81. Simons K, Ikonen E. Functional rafts in cell membranes.Nature. 1997;387:569–572.

    Article  PubMed  CAS  Google Scholar 

  82. Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms.Traffic. 2003;4:724–738.

    Article  PubMed  CAS  Google Scholar 

  83. Apparsundaram S, Sung U, Price RD, Blakely RD. Trafficking-dependent and- independent pathways of neurotransmitter transporter regulation differentially involving p38 mitogen-activated protein kinase revealed in studies of insulin modulation of norepinephrine transport in SK-N-SH cells.J Pharmacol Exp Ther. 2001;299:666–677.

    PubMed  CAS  Google Scholar 

  84. Carvelli L, Moron JA, Kahlig KM, et al. PI 3-kinase regulation of dopamine uptake.J Neurochem. 2002;81:859–869.

    Article  PubMed  CAS  Google Scholar 

  85. Moron JA, Zakharova I, Ferrer JV, et al. Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity.J Neurosci. 2003;23:8480–8488.

    PubMed  CAS  Google Scholar 

  86. Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD. Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation.Mol Pharmacol. 2004;65:1462–1474.

    Article  PubMed  CAS  Google Scholar 

  87. Chaouloff F, Berton O, Mormede P. Serotonin and stress.Neuropsychopharmacology. 1999;21:28S-32S.

    PubMed  CAS  Google Scholar 

  88. Miller KJ, Hoffman BJ. Adenosine A3 receptors regulate serotonin transport via nitric oxide and cGMP.J Biol Chem. 1994;269:27351–27356.

    PubMed  CAS  Google Scholar 

  89. Huff RA, Vaughan RA, Kuhar MJ, Uhl GR. Phorbol esters increase dopamine transporter phosphorylation and decrease transport Vmax.J Neurochem. 1997;68:225–232.

    Article  PubMed  CAS  Google Scholar 

  90. Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants.Science. 1999;285:763–766.

    Article  PubMed  CAS  Google Scholar 

  91. Foster JD, Pananusorn B, Vaughan RA. Dopamine transporters are phosphorylated on N-terminal serines in rat striatum.J Biol Chem. 2002;277:25178–25186.

    Article  PubMed  CAS  Google Scholar 

  92. Bonisch H, Hammermann R, Bruss M. Role of protein kinase C and second messengers in regulation of the norepinephrine transporter.Adv Pharmacol. 1998;42:183–186.

    Article  PubMed  CAS  Google Scholar 

  93. Whitworth TL, Quick MW. Upregulation of gamma-aminobutyric acid transporter expression: role of alkylated gamma-aminobutyric acid derivatives.Biochem Soc Trans. 2001;29:736–741.

    Article  PubMed  CAS  Google Scholar 

  94. Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U. N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization.J Biol Chem. 2003;278:4990–5000.

    Article  PubMed  CAS  Google Scholar 

  95. Lin Z, Zhang PW, Zhu X, et al. Phosphatidylinositol 3-kinase, protein kinase C, and MEK1/2 kinase regulation of dopamine transporters (DAT) require N-terminal DAT phosphoacceptor sites.J Biol Chem. 2003;278:20162–20170.

    Article  PubMed  CAS  Google Scholar 

  96. Doolen S, Zahniser NR. Protein tyrosine kinase inhibitors alter human dopamine transporter activity in Xenopus oocytes.J Pharmacol Exp Ther. 2001;296:931–938.

    PubMed  CAS  Google Scholar 

  97. Law RM, Stafford A, Quick MW. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation.J Biol Chem. 2000;275:23986–23991.

    Article  PubMed  CAS  Google Scholar 

  98. Whitworth TL, Quick MW. Substrate-induced regulation of gamma-aminobutyric acid transporter trafficking requires tyrosine phosphorylation.J Biol Chem. 2001;276:42932–42937.

    Article  PubMed  CAS  Google Scholar 

  99. Quick MW, Hu J, Wang D, Zhang HY. Regulation of a gamma-aminobutyric acid transporter by reciprocal tyrosine and serine phosphorylation.J Biol Chem. 2004;279:15961–15967.

    Article  PubMed  CAS  Google Scholar 

  100. Sung U, Apparsundaram S, Galli A, et al. A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity.J Neurosci. 2003;23:1697–1709.

    PubMed  CAS  Google Scholar 

  101. Bauman PA, Blakely RD. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity.Arch Biochem Biophys. 2002;404:80–91.

    Article  PubMed  CAS  Google Scholar 

  102. Uhl GR, Lin Z. The top 20 dopamine transporter mutants: structure-function relationships and cocaine actions.Eur J Pharmacol. 2003;479:71–82.

    Article  PubMed  CAS  Google Scholar 

  103. Goldberg NR, Beuming T, Soyer OS, Goldstein RA, Weinstein H, Javitch JA. Probing conformational changes in neurotransmitter transporters: a structural context.Eur J Pharmacol. 2003;479:3–12.

    Article  PubMed  CAS  Google Scholar 

  104. Loland CJ, Granas C, Javitch JA, Gether U. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding.J Biol Chem. 2004;279:3228–3238.

    Article  PubMed  CAS  Google Scholar 

  105. Fornes A, Nunez E, Aragon C, Lopez-Corcuera B. The second intracellular loop of the glycine transporter 2 contains crucial residues for glycine transport and phorbol ester-induced regulation.J Biol Chem. 2004;279:22934–22943.

    Article  PubMed  CAS  Google Scholar 

  106. Deken SL, Beckman ML, Boos L, Quick MW. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A.Nat Neurosci. 2000;3:998–1003.

    Article  PubMed  CAS  Google Scholar 

  107. Horton N, Quick MW. Syntaxin 1A up-regulates GABA transporter expression by subcellular redistribution.Mol Membr Biol. 2001;18:39–44.

    Article  PubMed  CAS  Google Scholar 

  108. Wang D, Deken SL, Whitworth TL, Quick MW. Syntaxin 1A inhibits GABA flux, efflux, and exchange mediated by the rat brain GABA transporter GAT1.Mol Pharmacol. 2003;64:905–913.

    Article  PubMed  CAS  Google Scholar 

  109. Haase J, Killian AM, Magnani F, Williams C. Regulation of the serotonin transporter by interacting proteins.Biochem Soc Trans. 2001;29:722–728.

    Article  PubMed  CAS  Google Scholar 

  110. Torres GE, Yao WD, Mohn AR, et al. Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1.Neuron. 2001;30:121–134.

    Article  PubMed  CAS  Google Scholar 

  111. Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis.FASEB J. 2001;15:916–926.

    Article  PubMed  CAS  Google Scholar 

  112. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the a-synuclein gene identified in families with Parkinson’s disease.Science 1997;276:2045–2047.

    Article  PubMed  CAS  Google Scholar 

  113. Wersinger C, Vernier P, Sidhu A. Trypsin disrupts the trafficking of the human dopamine transporter by alpha-synuclein and its A30P mutant.Biochemistry. 2004;43:1242–1253.

    Article  PubMed  CAS  Google Scholar 

  114. Carneiro AM, Ingram SL, Beaulieu JM, et al. The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter.J Neurosci. 2002;22:7045–7054.

    PubMed  CAS  Google Scholar 

  115. Saunders C, Ferrer JV, Shi L, et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism.Proc Natl Acad Sci USA. 2000;97:6850–6855.

    Article  PubMed  CAS  Google Scholar 

  116. Daws LC, Callaghan PD, Moron JA, et al. Cocaine increases dopamine uptake and cell surface expression of dopamine transporters.Biochem Biophys Res Commun. 2002;290:1545–1550.

    Article  PubMed  CAS  Google Scholar 

  117. Little KY, Elmer LW, Zhong H, Scheys JO, Zhang L. Cocaine induction of dopamine transporter trafficking to the plasma membrane.Mol Pharmacol. 2002;61:436–445.

    Article  PubMed  CAS  Google Scholar 

  118. Bernstein EM, Quick MW. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA.J Biol Chem. 1999;274:889–895.

    Article  PubMed  CAS  Google Scholar 

  119. Munir M, Correale DM, Robinson MB. Substrate-induced up-regulation of Na(+)-dependent glutamate transport activity.Neurochem Int. 2000;37:147–162.

    Article  PubMed  CAS  Google Scholar 

  120. Quick MW. Substrates regulate gamma-aminobutyric acid transporters in a syntaxin 1A-dependent manner.Proc Natl Acad Sci USA. 2002;99:5686–5691.

    Article  PubMed  CAS  Google Scholar 

  121. Hahn MK, Mazei-Robison M, Blakely RD. Single nucleotide polymorphisms in the human norepinephrine transporter gene impact expression, trafficking, antidepressant interaction and protein kinase C regulation.Mol Pharmacol. 2005;68:457–466.

    Article  PubMed  CAS  Google Scholar 

  122. Prasad HC, Zhu C, McCauley JL, et al. Human serotonin transporter variants display selective insensitivity to protein kinase G and p38 mitogen activated kinase.Proc Natl Acad Sci USA. 2005;102:11545–11550.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lankupalle D. Jayanthi.

Additional information

Published: October 27, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayanthi, L.D., Ramamoorthy, S. Regulation of monoamine transporters: Influence of psychostimulants and therapeutic antidepressants. AAPS J 7, 73 (2005). https://doi.org/10.1208/aapsj070373

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070373

Key words

Navigation