Skip to main content
Log in

Induction of antioxidative and antiapoptotic thioredoxin supports neuroprotective hypothesis of estrogen

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The original neuroprotective hypothesis of estrogen was based on the gender difference in brain response to the ischemia-reperfusion injury. Additional clinical reports also suggest that estrogen may improve cognition in patients with Alzheimer disease. 17β-Estradiol is the most potent endogenous ligand of estrogen, which protects against neurodegeneration in both cell and animal models. Estrogen-mediated neuroprotection is probably mediated by both receptor-dependent and -independent mechanisms. Binding of estrogen such as 17β-estradiol to estrogen receptors (ERs) activates the homodimers of ER-DNA and its binding to estrogen response elements in the promoter region of genes such as neuronal nitric oxide synthase (NOS1) for regulating gene expression in target brain cells. In addition to the induction of NOS1, estrogen increases the expression of antiapoptotic protein such as bcl-2. Furthermore, our recent observations provide new molecular biologic and pharmacologic evidence suggesting that physiologic concentrations of 17β-estradiol (<10 nM) activate ERs (ERβ >ERα) and upregulate a cyclic guanosine 5′-monophosphate (cGMP)-dependent thioredoxin (Trx) and MnSOD expression following the induction of NOS1 in human brain-derived SH-SY5Y cells. We thus proposed that the estrogen-mediated gene induction of Trx plays a pivotal role in the promotion of neuroprotection because Trx is a multifunctional antioxidative and antiapoptotic protein. For managing progressive neurodegeneration such as Alzheimer dementia, our estrogen proposal of the signaling pathway of cGMP-dependent protein kinase (PKG) in mediating estrogen-induced cytoprotective genes thus fosters research and development of the new estrogen ligands devoid of female hormonal side effects such as carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belcher, S. M. (1999). Brain Res. Dev. Brain Res. 115, 57–69.

    Article  PubMed  CAS  Google Scholar 

  2. McEwen, B., Akama, K., Alves, S., et al. (2001). Proc. Natl. Acad. Sci. USA 98, 7093–7100.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, L., Andersson, S., Warner, M., and Gustafsson, J. A. (2001). Proc. Natl. Acad. Sci. USA 98, 2792–2796.

    Article  PubMed  CAS  Google Scholar 

  4. Patrone, C., Pollio, G., Vegeto, E., et al. (2000). Endocrinology 141, 1839–1845.

    Article  PubMed  CAS  Google Scholar 

  5. Dubal, D. B., Zhu, H., Yu, J., et al. (2001). Proc. Natl. Acad. Sci. USA 98, 1952–1957.

    Article  PubMed  CAS  Google Scholar 

  6. Jover, T., Tanaka, H., Calderone, A., et al. (2002). J. Neurosci. 22, 2115–2124.

    PubMed  CAS  Google Scholar 

  7. Geary, G. G., McNeil, A. M., Ospina, J. A., Krause, D. N., Korach, K. S., and Duclles, S. P. (2001). J. Appl. Physiol. 91, 2391–2399.

    PubMed  CAS  Google Scholar 

  8. Howell, A., Osborne, C. K., Morris, C., and Wakeling, A. E. (2000). Cancer 89, 817–825.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, S. Y., Andoh, T., Murphy, D. L., and Chiueh, C. C. (2003). FASEB J. Express. 10.1096/fj.02-0807fje.

  10. Nishiyama, A., Matsui, M., Iwata, S., et al. (1999). J. Biol. Chem. 274, 21645–21650.

    Article  PubMed  CAS  Google Scholar 

  11. Paech, K., Webb, P., Kuiper, G. G., et al. (1997). Science 277, 1508–1510.

    Article  PubMed  CAS  Google Scholar 

  12. Nuedling, S., Karas, R. H., Mendelsohn, M. E., et al. (2001). FEBS Lett. 502, 103–108.

    Article  PubMed  CAS  Google Scholar 

  13. Fillit, H., Weinreb, H., Cholst, I., et al. (1986). Psychoneuroendocrinology 11, 337–345.

    Article  PubMed  CAS  Google Scholar 

  14. Shumaker, S. A., Reboussin, B. A., Espeland, M. A., et al. (1998). Control Clin. Trials 19, 604–621.

    Article  PubMed  CAS  Google Scholar 

  15. Asthana, S., Baker, L. D., Craft, S., et al. (2001). Neurology 57, 605–612.

    PubMed  CAS  Google Scholar 

  16. Green, P. S., Bishop, J., and Simpkins, J. W. (1997). J. Neurosci. 17, 511–515.

    PubMed  CAS  Google Scholar 

  17. Kim, H., Bang, O. Y., Jung, M. W., et al. (2001). Neurosci. Lett. 302, 58–62.

    Article  PubMed  CAS  Google Scholar 

  18. Kuroki, Y., Fukushima, K., Kanda, Y., Mizuno, K., and Watanabe, Y. (2001). Eur. J. Neurosci. 13, 472–476.

    Article  PubMed  CAS  Google Scholar 

  19. Berco, M. and Bhavnani, B. R. (2001). J. Soc. Gynecol. Invest. 8, 245–254.

    Article  CAS  Google Scholar 

  20. Hawkins, V., Shen, Q., and Chiueh, C. C. (1999). J. Biomed. Sci. 6, 433–438.

    PubMed  CAS  Google Scholar 

  21. Howard, S. A., Brooke, S. M., and Sapolsky, R. M. (2001). Exp. Neurol. 168, 385–391.

    Article  PubMed  CAS  Google Scholar 

  22. Sawada, H., Ibi, M., Kihara, T., et al. (2002). Neuropharmacology 42, 1056–1064.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, L., Andersson, S., Warner, M., and Gustafsson, J. A. (2002). Sci. STKE 138, 1–4.

    Google Scholar 

  24. Hall, E. D., Pazara, K. E., and Linseman, K. L. (1991). J. Cereb. Blood Flow Metab. 11, 292–298.

    PubMed  CAS  Google Scholar 

  25. Roof, R. L. and Hall, E. D. (2000). J. Neurotrauma 17, 367–388.

    PubMed  CAS  Google Scholar 

  26. Garcia-Segura, L. M., Azcoitia, I., and Doncarlos, L. L. (2001). Prog. Neurobiol. 63, 29–60.

    Article  PubMed  CAS  Google Scholar 

  27. Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W., and Bottner, M. (2001). Endocrinology 142, 969–973.

    Article  PubMed  CAS  Google Scholar 

  28. Bruce-Keller, A. J., Keeling, J. L., Keller, J. N., Huang, F. F., Camondola, S., and Mattson, M. P. (2000). Endocrinology 141, 3646–3656.

    Article  PubMed  CAS  Google Scholar 

  29. Rauhala, P. and Chiueh, C. C. (2000). Ann. NY Acad. Sci. 899, 238–254.

    Article  PubMed  CAS  Google Scholar 

  30. Green, P. S., Yang, S. H., and Simpkins, J. W. (2000). Novartis Found. Symp. 230, 202–213.

    Article  PubMed  CAS  Google Scholar 

  31. Ivanova, T., Kuppers, E., Engele, J., and Beyer, C. (2001). J. Neurosci. Res. 66, 221–230.

    Article  PubMed  CAS  Google Scholar 

  32. Singleton, J. R., Randolph, A. E., and Feldman, E. L. (1996). Cancer Res. 56, 4522–4529.

    PubMed  CAS  Google Scholar 

  33. Dubal, D. B., Shughrue, P. J., Wilson, M. E., Merchenthaler, I., and Wise, P. M. (1999). J. Neurosci. 19, 6385–6393.

    PubMed  CAS  Google Scholar 

  34. Stoltzner, S. E., Berchtold, N. C., Cotman, C. W., and Pike, C. J. (2001). Neuroreport 12, 2797–2800.

    Article  PubMed  CAS  Google Scholar 

  35. Sawada, H., Ibi, M., Kihara, T., et al. (2000). FASEB J. 14, 1202–1214.

    PubMed  CAS  Google Scholar 

  36. Paech, K., Webb, P., Kuiper, G. G., et al. (1997). Science 277, 1508–1510.

    Article  PubMed  CAS  Google Scholar 

  37. Harms, C., Lautenschlager, M., Bergk, A., et al. (2001). J. Neurosci. 21, 2600–2609.

    PubMed  CAS  Google Scholar 

  38. Weiner, C. P., Lizasoain, I., Baylis, S. A., Knowles, R. G., Charles, I. G., and Moncada, S. (1994). Proc. Natl. Acad. Sci. USA 91, 5212–5216.

    Article  PubMed  CAS  Google Scholar 

  39. Pelligrino, D. A., Santizo, R., Baughman, V. L., and Wang, Q. (1998). Neuroreport 9, 3285–3291.

    Article  PubMed  CAS  Google Scholar 

  40. Garcia-Duran, M., de Frutos, T., Diaz-Recasens, J., et al. (1999). Circ. Res. 85, 1020–1026.

    PubMed  CAS  Google Scholar 

  41. Andoh, T., Chock, P. B., and Chiueh, C. C. (2002). J. Biol. Chem. 277, 9655–9660.

    Article  PubMed  CAS  Google Scholar 

  42. Andoh, T., Chock, P. B., and Chiueh, C. C. (2002). Ann. NY Acad. Sci. 962, 1–7.

    Article  PubMed  CAS  Google Scholar 

  43. Andoh, T., Chiueh, C. C., and Chock, P. B. (2003). J. Biol. Chem. 278, 885–890.

    Article  PubMed  CAS  Google Scholar 

  44. Andoh, T., Lee, S. Y., and Chiueh, C. C. (2000). FASEB J. 14, 2144–2146.

    PubMed  CAS  Google Scholar 

  45. Estevez, A. G., Spear, N., Thompson, J. A., et al. (1998). J. Neurosci. 18, 3708–3714.

    PubMed  CAS  Google Scholar 

  46. Kim, Y. M., Chung, H. T., Kim, S. S., et al. (1999). J. Neurosci. 19, 6740–6747.

    PubMed  CAS  Google Scholar 

  47. Wirtz-Brugger, F. and Giovanni, A. (2000). Neuroscience 99, 737–750.

    Article  PubMed  CAS  Google Scholar 

  48. Takuma, K., Phuagphong, P., Lee, E., Mori, K., Baba, A., and Matsuda, T. (2001). J. Biol. Chem. 276, 48093–48099.

    PubMed  CAS  Google Scholar 

  49. Takagi, Y., Mitsui, A., Nishiyama, A., et al. (1999). Proc. Natl. Acad. Sci. USA 96, 4131–4136.

    Article  PubMed  CAS  Google Scholar 

  50. Holmgren, A. (2000). Antioxid. Redox Signal 2, 811–820.

    Article  PubMed  CAS  Google Scholar 

  51. Liu, H., Nishitoh, H., Ichijo, H., and Kyriakis, J. M. (2000). Mol. Cell Biol. 20, 2198–2208.

    Article  PubMed  CAS  Google Scholar 

  52. Hayashi, T., Ueno, Y., and Okamoto, T. (1993). J. Biol. Chem. 268, 11380–11388.

    PubMed  CAS  Google Scholar 

  53. Saitoh, M., Nishitoh, H., Fujii, M., et al. (1998). EMBO J. 17, 2596–2606.

    Article  PubMed  CAS  Google Scholar 

  54. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997). Proc. Natl. Acad. Sci. USA 94, 3633–3638.

    Article  PubMed  CAS  Google Scholar 

  55. Ueno, M., Masutani, H., Arai, R. J., et al. (1999). J. Biol. Chem. 274, 35809–35815.

    Article  PubMed  CAS  Google Scholar 

  56. Haendeler, J., Hoffman, J., Tischler, V., Berk, B. C., Zeiher, A. M., and Dimmeler, S. (2002). Nat. Cell Biol. 4, 743–749.

    Article  PubMed  CAS  Google Scholar 

  57. Das, K. C., Lewis-Molock, Y., and White, C. W. (1997). Am. J. Respir. Cell Mol. Biol. 17, 713–726.

    PubMed  CAS  Google Scholar 

  58. Bai, J., Nakamura, H., Kwon, Y.-W. et al. (2003). J. Neurosci. 23, 503–509.

    PubMed  CAS  Google Scholar 

  59. Behl, C., Skutella, T., Lezoualc’h, F., et al. (1997). Mol. Pharmacol. 51, 535–541.

    PubMed  CAS  Google Scholar 

  60. Chiueh, C. C. and Andoh, T. (2001). In: Mapping the progress of Alzheimer’s and Parkinson’s disease. (Mizuno, Y., Fisher, A., and Hanin, I. (eds.). Kluwer Academic/Plenum: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang C. Chiueh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiueh, C.C., Lee, S.Y., Andoh, T. et al. Induction of antioxidative and antiapoptotic thioredoxin supports neuroprotective hypothesis of estrogen. Endocr 21, 27–31 (2003). https://doi.org/10.1385/ENDO:21:1:27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:21:1:27

Key Words

Navigation