Skip to main content
Log in

Femtomole immunodetection of synthetic and endogenous amyloid-β oligomers and its application to Alzheimer’s disease drug candidate screening

  • Alzheimer’s Therapeutics: Anti-Amyloid
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a fatal, progressive dementia for which there is no cure and for which a molecular basis has yet to be established. However, considerable evidence suggests that AD is linked to neurotoxic assemblies of the 42-amino-acid peptide amyloid β (Aβ). There is now a clear body of evidence that shows this neurotoxicity resides not only in insoluble fibrils of Aβ but also in soluble Aβ ADDLs (Aβ-derived diffusible ligands) and larger protofibrils. Further, anti-Aβ antibodies have been reported to reverse memory failure in human amyloid precursor protein (hAPP)-expressed transgenic mice in a manner that suggests symptom reversal is attributable to targeting of ADDLs. Clearly, a search for drugs targeting the assembly of these soluble Aβ species represents a new and potentially important approach to the treatment of AD. In this work we describe the development of a dot-blot immunoassay to measure ADDL at the femtomole level, its use in defining the time course of ADDL formation, and its use in determining the presence of ADDLs in the hAPP transgenic mouse brain. Discussion of a protocol to screen agents for inhibition of neurotoxic ADDL formation both in vivo and in vitro is also presented. The methods are suitable for screening combinatorial libraries and, importantly, provide the potential for simultaneous information on candidate transport across the blood-brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bohrmann B., Adrian M., Dubochet J., Kuner P., Muller F., Huber W., et al. (2000) Self-assembly of beta-amyloid 42 is retarded by small molecular ligands at the stage of structural intermediates. J. Struct. Biol. 130, 232–246.

    Article  PubMed  CAS  Google Scholar 

  • D’Hooge R., Nagels G., Westland C. E., Mucke L., and De Deyn P. P. (1996) Spatial learning deficit in mice expressing human 751-amino acid beta-amyloid precursor protein. Neuroreport 7, 2807–2811.

    Article  Google Scholar 

  • Dodart J. C., Bales K. R., Gannon K. S., Greene S. J., DeMattos R. B., Mathis C., et al. (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat. Neurosci. 5, 452–457.

    PubMed  CAS  Google Scholar 

  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Harper J. D. and Lansbury P. T., Jr. (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407.

    Article  PubMed  CAS  Google Scholar 

  • Harper J. D., Wong S. S., Lieber C. M., and Lansbury P. T., Jr. (1999) Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry 38, 8972–8980.

    Article  PubMed  CAS  Google Scholar 

  • Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., et al. (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884.

    PubMed  CAS  Google Scholar 

  • Holcomb L., Gordon M. N., McGowan E., Yu X., Benkovic S., Jantzen P., et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Hsia A. Y., Masliah E., McConlogue L., Yu G. Q., Tatsuno G., Hu K., et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96, 3228–3233.

    Article  PubMed  CAS  Google Scholar 

  • Klein W. L., Krafft G. A., and Finch C. E. (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lambert M. P., Viola K. L., Chromy B. A., Chang L., Morgan T. E., Yu J., et al. (2001) Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem. 79, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo A. and Yankner B. A. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA 91, 12,243–12,247.

    Article  CAS  Google Scholar 

  • McLean C. A., Cherny R. A., Fraser F. W., Fuller S. J., Smith M. J., Beyreuther K., et al. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866.

    Article  PubMed  CAS  Google Scholar 

  • Moechars D., Dewachter I., Lorent K., Reverse D., Baekelandt V., Naidu A., et al. (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274, 6483–6492.

    Article  PubMed  CAS  Google Scholar 

  • Mucke L., Masliah E., Yu G. Q., Mallory M., Rockenstein E. M., Tatsuno G., et al. (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058.

    PubMed  CAS  Google Scholar 

  • Nybo M., Svehag S. E., and Holm N. E. (1999) An ultra-structural study of amyloid intermediates in A beta1-42 fibrillogenesis. Scand. J. Immunol. 49, 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Podlisny M. B., Walsh D. M., Amarante P., Ostaszewski B. L., Stimson E. R., Maggio J. E., et al. (1998) Oligomerization of endogenous and synthetic amyloid beta-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37, 3602–3611.

    Article  PubMed  CAS  Google Scholar 

  • Potempska A., Mack K., Mehta P., Kim K. S., and Miller D. L. (1999) Quantification of sub-femtomole amounts of Alzheimer amyloid beta peptides. Amyloid 6, 14–21.

    PubMed  CAS  Google Scholar 

  • Sian A. K., Frears E. R., El Agnaf O. M., Patel B. P., Manca M. F., Siligardi G., et al. (2000) Oligomerization of beta-amyloid of the Alzheimer’s and the Dutch-cerebral-haemorrhage types. Biochem. J. 349, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Small G. W., Rabins P. V., Barry P. P., Buckholtz N. S., DeKosky S. T., Ferris S. H., et al. (1997) Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 278, 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Southwick P. C., Yamagata S. K., Echols C. L., Jr., Higson G. J., Neynaber S. A., Parson R. E., et al. (1996) Assessment of amyloid beta protein in cerebrospinal fluid as an aid in the diagnosis of Alzheimer’s disease. J. Neurochem. 66, 259–265.

    Article  Google Scholar 

  • Terry R. D., ed. (1999) The neuropathology of Alzheimer disease and the structural basis of its cognitive alterations, in Alzheimer Disease, Terry, Lippincott Williams & Wilkins, Philadelphia, PA, pp. 187–206.

  • Walsh D. M., Klyubin I., Fadeeva J. V., Cullen W. K., Anwyl R., Wolfe M. S., et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., and Teplow D. B. (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22,364–22,372.

    CAS  Google Scholar 

  • Wang H. W., Pasternak J. F., Kuo H., Ristic H., Lambert M. P., Chromy B., et al. (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Westerman M. A., Cooper-Blacketer D., Mariash A., Kotilinek L., Kawarabayashi T., Younkin L. H., et al. (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 22, 1858–1867.

    PubMed  CAS  Google Scholar 

  • Wolfe M. S. (2002) Secretase as a target for Alzheimer’s disease. Curr. Top. Med. Chem. 2, 371–383.

    Article  PubMed  CAS  Google Scholar 

  • Yu J., Bakhos L., Chang L., Holterman M. J., Klein W. L., and Venton D. L. (2002) Per-6-substituted beta-cyclodextrin libraries inhibit formation of beta-amyloid-peptide (A beta)-derived, soluble oligomers. J. Mol. Neurosci. 19, 51–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Bakhos, L., Wang, Z. et al. Femtomole immunodetection of synthetic and endogenous amyloid-β oligomers and its application to Alzheimer’s disease drug candidate screening. J Mol Neurosci 20, 305–313 (2003). https://doi.org/10.1385/JMN:20:3:305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:20:3:305

Index Entries

Navigation