Skip to main content
Log in

Fast nongenomic effects of steroids on synaptic transmission and role of endogenous neurosteroids in spinal pain pathways

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Steroids exert long-term modulatory effects on numerous physiological functions by acting at intracellular/nuclear receptors influencing gene transcription. Steroids and neurosteroids can also rapidly modulate membrane excitability and synaptic transmission by interacting with ion channels, that is, ionotropic neurotransmitter receptors or voltage-dependent Ca2+ or K+ channels. More recently, the cloning of a plasma membrane-located G protein-coupled receptor for progestins, in various species has suggested that steroids/neurosteroids could also influence second-messenger pathways by directly interacting with specific membrane receptors. Here we review the experimental evidence implicating steroids/neurosteroids in the modulation of synaptic transmission and the evidence for a role of endogenously produced neurosteroids in such modulatory effects. We present some of our recent results concerning inhibitory synaptic transmission in lamina II of the spinal cord and show that endogenous 5α-reduced neurosteroids are produced locally in lamina II and modulate synaptic γ-aminobutyric acid A (GABAA) receptor function during development, as well as during inflammatory pain. The production of 5α-reduced neurosteroids is controlled by the endogenous activation of the peripheral benzodiazepine receptor (PBR), which initiates the first step of neurosteroidogenesis by stimulating the translocation, of cholesterol across the inner mitochondrial membrane. Tonic neurosteroidogenesis observed in immature animals was decreased during postnatal, development, resulting in an acceleration of GABAA receptor-mediated miniature inhibitory postsynaptic current (mIPSC) kinetics observed in the adult. Stimulation of the PBR resulted in a prolongation of GABA ergic mIPSCs at all ages and was observed during inflammatory pain. Neurosteroidogenesis might play an, important role in the control of nociception at least at the spinal cord level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdrachmanova G., Chodounska H., and Vyklicky L. Jr. (2001) Effects of steroids on NMDA receptors and excitatory synaptic transmission in neonatal motoneurons in rat spinal cord slices. Eur. J. Neurosci. 14, 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Baulieu E. E. (1997) Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog. Horm. Res. 52, 1–32.

    PubMed  CAS  Google Scholar 

  • Baulieu E. E. (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology. 23, 963–987.

    Article  PubMed  CAS  Google Scholar 

  • Belelli, D. and Herd M. B. (2003) The contraceptive agent Provera enhances GABA(A) receptor-mediated inhibitory neurotransmission in the rat hippocampus: evidence for endogenous, neurosteroids. J. Neurosci. 23, 10013–10020.

    PubMed  CAS  Google Scholar 

  • Belelli D., Casula A., Ling A., and Lambert J. J. (2002) The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 43, 651–661.

    Article  PubMed  CAS  Google Scholar 

  • Bergeron R., de Montigny C., and Debonnel G. (1996) Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J. Neurosci. 16, 1193–1202.

    PubMed  CAS  Google Scholar 

  • Besson J. M. and Chaouch A. (1987) Peripheral and spinal mechanisms of nociception. Physiol. Rev. 67, 67–186.

    PubMed  CAS  Google Scholar 

  • Bixo M., Andersson A., Winblad, B., Purdy R. H., and Backstrom T. (1997) Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 764, 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Bohlhalter S., Weinmann O., Mohler H., and Fritschy J. M. (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J. Neurosci. 16, 283–297.

    PubMed  CAS  Google Scholar 

  • Brussaard A. B. and Koksma J. J. (2003) Conditional regulation of neurosteroid sensitivity of GABAA receptors. Ann. N. Y. Acad. Sci. 1007, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Caraiscos V. B., Elliott E. M., You-Ten K. E., Cheng V. Y., Belelli D., Newell J. G., et al. (2004) Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. U. S. A. 101, 3662–3667.

    Article  PubMed  CAS  Google Scholar 

  • Ceccon M., Rumbaugh G., and Vicini S. (2001) Distinct effect of pregnenolone sulfate on NMDA receptor subtypes. Neuropharmacology 40, 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Chizh B. A. and Illes P. (2001) P2X receptors and nociception. Pharmacol. Rev. 53, 553–568.

    PubMed  CAS  Google Scholar 

  • Coirini H., Gouezou M., Liere P., Delespierre B., Pianos A., Eychenne B., et al. (2002) 3 Beta-hydroxysteroid dehydrogenase expression in rat spinal cord. Neuroscience 113, 883–891.

    Article  PubMed  CAS  Google Scholar 

  • Collo G., North R. A., Kawashima, E., Merlo-Pich E., Neidhart S., Surprenant A., and Buell G. (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of anextended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507.

    PubMed  CAS  Google Scholar 

  • Compagnone N. A. and Mellon S. H. (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol. 21, 1–56.

    Article  PubMed  CAS  Google Scholar 

  • Concas A., Follesa P., Barbaccia M. L., Purdy R. H., and Biggio G. (1999) Physiological modulation of GABA(A) receptor plasticity by progesterone metabolites. Eur. J. Pharmacol. 375, 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Costa E., Auta J., Guidotti A., Korneyev A., and Romeo E. (1994) The pharmacology of neurosteroidogenesis. J. Steroid Biochem. Mol. Biol. 49, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Covey D. F., Evers A. S., Mennerick S., Zorumski C. F., and Purdy R. H. (2001) Recent developments in structure-activity relationships for steroid modulators of GABA(A) receptors, Brain Res. Brain Res. Rev 37, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • DalBo S., Nardi G. M., Ferrara P., Ribeiro-do-Valle R. M., and Farges R. C. (2004) Antinociceptive effects of peripheral benzodiazepine receptors. Pharmacology 70, 188–194.

    Article  PubMed  CAS  Google Scholar 

  • Dayanithi G. and Tapia-Arancibia L. (1996) Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons. J. Neurosci. 16, 130–136.

    PubMed  CAS  Google Scholar 

  • Debonnel G., Bergeron R., and de Montigny C. (1996) Potentiation by dehydroepiandrosterone of the neuronal response to N-methyl-D-aspartate in the CA3 region of the rat dorsal hippocampus: an effect mediated via sigma receptors. J. Endocrinol. 150 (Suppl.), S33-S42.

    PubMed  CAS  Google Scholar 

  • De Roo M., Rodeau J. L., and Schlichter R. (2003) Dehydroepiandrosterone potentiates native ionotropic ATP receptors containing the P2X2 subunit in rat sensory neurones. J. Physiol. 552 59–71.

    Article  PubMed  CAS  Google Scholar 

  • Evrard H. C. and Balthazart J. (2002) Localization of oestrogen receptors in the sensory and motor areas of the spinal cord in Japanese quail (Coturnix japonica). J. Neuroendocrinol. 14, 894–903.

    Article  PubMed  CAS  Google Scholar 

  • Evrard H. C., and Balthazart J. (2003) Aromatase, (estrogen synthase) activity in the dorsal horn of the spinal cord: functional implications. Ann. N.Y. Acad. Sci. 1007, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Evrard H. C. and Balthazart J. (2004) Rapid regulation of pain by estrogens synthesized in spinal dorsal horn neurons. J. Neurosci. 24, 7225–7229.

    Article  PubMed  CAS  Google Scholar 

  • Evrard H., Baillien M., Foidart A., Absil P., Harada N., and Balthazart J. (2000) Localization and controls of aromatase in the quail spinal cord. J. Comp. Neurol. 423, 552–564.

    Article  PubMed  CAS  Google Scholar 

  • Evrard H. C., Willems E., Harada N., and Balthazart J. (2003) Specific innervation of aromatase neurons by substance P fibers in the dorsal horn of the spinal cord in quail. J. Comp. Neurol. 465, 309–318.

    Article  PubMed  CAS  Google Scholar 

  • Feigenspan A., Wassle H., and Bormann J. (1993) Pharmacology of GABA receptor Cl-channels in rat retinal bipolar cells. Nature 361, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Mullen J. M. (1995) Cortisol inhibition of calcium currents in guinea pig hippocampal CA1 neurons via G-protein-coupled activation of protein kinase C. J. Neurosci. 15, 903–911.

    PubMed  CAS  Google Scholar 

  • ffrench-Mullen J. M., Danks P., and Spence K. T. (1994) Neurosteroids modulate calcium currents in hippocampal CA1 neurons via a pertussis toxin-sensitive G-protein-coupled mechanism. J. Neurosci. 14, 1963–1977.

    PubMed  CAS  Google Scholar 

  • Foy M. R., Xu J., Xie X., Brinton R. D., Thompson R. F., and Berger T. W. (1999) 17 beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J. Neurophysiol 81, 925–929.

    PubMed  CAS  Google Scholar 

  • Fugger H. N., Kumar A., Lubahn D. B., Korach K. S., and Foster T. C. (2001) Examination of estradiol effects on the rapid estradiol mediated in crease in hippocampal synaptic transmission in estrogen receptor alpha knockout mice. Neurosci. Lett. 309, 207–209.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa A., Miyatake A., Ohnishi T., and Ichikawa Y. (1998) Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization, of StAR, cytochrome P-450SCC(CYPXIA1), and 3beta-hydroxysteroid dehydrogenase in the rat brain. J. Neurochem. 71, 2231–2238.

    Article  PubMed  CAS  Google Scholar 

  • Gu Q. and Moss R. L. (1996) 17 beta-Estradiol, potentiates kainate-induced currents via activation of the cAMP cascade. J. Neurosci. 16, 3620–3629.

    PubMed  CAS  Google Scholar 

  • Gu Q. and Moss, R. L. (1998) Novel mechanism for nongenomic action of 17 beta-oestradiol on kainate-induced currents in isolated rat CA1 hippocampal neurones. J. Physiol. 506(Pt. 3), 745–754.

    Article  PubMed  CAS  Google Scholar 

  • Gu Q., Korach K. S., and Moss R. L. (1999) Rapid action of 17beta-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 140, 660–666.

    Article  PubMed  CAS  Google Scholar 

  • Harney S. C., Frenguelli B. G., and Lambert J. J. (2003) Phosphorylation influences neurosteroid modulation of synaptic GABAA receptors in rat CA1 and dentate gyrus neurones. Neuropharmacology 45, 873–883.

    Article  PubMed  CAS  Google Scholar 

  • Harrison N. L., Majewska M. D., Harrington J. W., and Barker J. L. (1987) Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J. Pharmacol. Exp. Ther. 241, 346–353.

    PubMed  CAS  Google Scholar 

  • Hauet T., Liu J., Li H., Gazouli M., Culty M., and Papadopoulos V. (2002) PBR, StAR, and PKA: partners in cholesterol transport, in steroidogenic cells. Endocr. Res. 28, 395–401.

    Article  PubMed  CAS  Google Scholar 

  • Horak M., Vlcek K., Petrovic M., Chodounska H., and Vyklicky L. Jr. (2004) Molecular mechanism of pregnenolone sulfate actionat NR1/NR2B receptors. J. Neurosci. 24, 10318–10325.

    Article  PubMed  CAS  Google Scholar 

  • Huettner J. E. (2003) Kainate receptors and synaptic transmission. Prog. Neurobiol. 70, 387–407.

    Article  PubMed  CAS  Google Scholar 

  • Hugel S. and Schlichter R. (2000) Presynaptic P2X receptors facilitate inhibitory GABA ergic transmission between cultured rat spinal cord dorsal horn neurons. J. Neurosci. 20, 2121–2130.

    PubMed  CAS  Google Scholar 

  • Jo Y. H. and Schlichter R. (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat. Neurosci. 2, 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M., Farrant M., and Cull-Candy S. G. (1995) Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J. Physiol. 485(Pt. 2), 419–435.

    PubMed  CAS  Google Scholar 

  • Kavaliers M. and Wiebe J. P. (1987) Analgesic effects of the progesterone, metabolite, 3 alpha-hydroxy-5 alpha-pregnan-20-one, and possible modes of action in mice. Brain Res. 415, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Kavaliers M., Perrot-Sinal T. S., Desjardins D. C., Cross-Mellor S. K., and Wiebe J. P. (2000) Antinociceptive effects of the neuroactive steroid, 3alpha-hydroxy-5alpha-pregnan-20-one and progesterone in the land snail, Cepaea nemoralis. Neuroscience 95, 807–812.

    Article  PubMed  CAS  Google Scholar 

  • Keller A. F., Breton J. D., Schlichter R., and Poisbeau P. (2004) Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J. Neurosci. 24, 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Keller A. F., Coull J. A., Chery N., Poisbeau P., and De Koninck Y. (2001) Region-specific developmental specialization of GABA-glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J. Neurosci. 21, 7871–7880.

    PubMed  CAS  Google Scholar 

  • Kelly M. J., Lagrange A. H., Wagner E. J., and Ronnekleiv O. K. (1999) Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64, 64–75.

    Article  PubMed  CAS  Google Scholar 

  • Kelly M. J., Loose M. D., and Ronnekleiv O. K. (1992) Estrogen suppresses mu-opioid- and GABAB-mediated hyperpolarization of hypothalamic arcuate neurons. J. Neurosci. 12, 2745–2750.

    PubMed  CAS  Google Scholar 

  • Kelly M. J., Qiu J., and Ronnekleiv O. K. (2003) Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann. N. Y. Acad. Sci. 1007, 6–16.

    Article  PubMed  CAS  Google Scholar 

  • Kibaly C., Patte-Mensah C., and Mensah-Nyagan A. G. (2005) Molecular and neurochemical evidence for the biosynthesis of dehydroepiandrosterone in the adult rat spinal cord. J. Neurochem. 93, 1220–1230.

    Article  PubMed  CAS  Google Scholar 

  • King S. R., Manna P. R., Ishii T., Syapin P. J., Ginsberg S. D., Wilson K., et al. (2002) An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J. Neurosci. 22, 10613–10620.

    PubMed  CAS  Google Scholar 

  • Koksma J. J., van Kesteren R. E., Rosahl T. W., Zwart R., Smit A. B., Luddens H., and Brussard A. B. (2003) Oxytocin regulates neurosteroid modulation of GABA(A) receptors in supraoptic nucleus around parturition. J. Neurosci. 23, 788–797.

    PubMed  CAS  Google Scholar 

  • Lambert J. J., Belelli D., Harney S. C., Peters J. A., and Frenguelli B. G. (2001) Modulation of native and recombinant GABA(A) receptors by endogenous and synthetic neuroactive steroids. Brain Res. Brain Res. Rev. 37, 68–80.

    Article  PubMed  CAS  Google Scholar 

  • Lambert J. J., Belelli D., Peden D. R., Vardy A. W., and Peters J. A. (2003) Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 71, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Liu D. and Dillon J. S. (2004) Dehydroepiandrosterone stimulates nitric oxide release in vascular endothelial cells: evidence for a cell surface receptor. Steroids 69, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Lovelace M., Watson T. G., and Stephenson G. L. (2003) Steroid 21-hydroxylase expression in cultured astrocytes. Brain Res. Bull. 61, 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Ma W., Saunders P. A., Somogyi R., Poulter M. O., and Barker J. L. (1993) Omogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J. Comp. Neurol. 338, 337–359.

    Article  PubMed  CAS  Google Scholar 

  • Malayev A., Gibbs T. T., and Farb D. H. (2002) Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br. J. Pharmacol. 135, 901–909.

    Article  PubMed  CAS  Google Scholar 

  • Maurice T., Urani A., Phan V. L., and Romieu P. (2001) The interaction between neuroactive steroids and the sigmal receptor function: behavioral consequences and therapeutic opportunities. Brain Res. Brain Res. Rev. 37, 116–132.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S. (1991) Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol. Sci. 12, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Cavarretta I., Magnaghi V., Ballabio M., Martini L., and Motta M. (1998) Crosstalk between normal and tumoral brain cells. Effect on sex steroid metabolism. Endocrine 8, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Melcangi R. C., Celotti F., and Martini L. (1994) Neurons influence the metabolism of testosterone in cultured astrocytes via humoral signals. Endocrine 2, 709–713.

    CAS  Google Scholar 

  • Mensah-Nyagan A. G., Do-Rego J. L., Beaujean D., Luu-The V., Pelletier G., and Vaudry H. (1999) Neurosteroids expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol. Rev. 51, 63–81.

    PubMed  CAS  Google Scholar 

  • Mermelstein P. G., Becker J. B., and Surmeier D. J. (1996) Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J. Neurosci. 16, 595–604.

    PubMed  CAS  Google Scholar 

  • Meyer J. H., Lee S., Wittenberg G. F., Randall R. D., and Gruol D. L. (1999) Neurosteroid regulation of inhibitory synaptic transmission in the rat hippocampus in vitro. Neuroscience 90, 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  • Mihalek R. M., Banerjee P. K., Korpi E. R., Quinlan J. J., Firestone L. L., Mi Z. P., et al. (1999) Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc. Natl. Acad. Sci. U.S.A. 96, 12905–12910.

    Article  PubMed  CAS  Google Scholar 

  • Millan M. J. (1999) The induction of pain: an integrative review. Prog. Neurobiol. 57, 1–164.

    Article  PubMed  CAS  Google Scholar 

  • Millan M. J. (2002) Descending control of pain. Prog. Neurobiol. 66, 355–474.

    Article  PubMed  CAS  Google Scholar 

  • Moss R. L., Gu Q., and Wong M. (1997) Estrogen: nontranscriptional signaling pathway. Recent Prog. Horm. Res. 52, 33–68.

    PubMed  CAS  Google Scholar 

  • Mtchedlishvili Z. and Kapur J. (2003) A presynaptic action of the neurosteroid pregnenolone sulfate on GABA-ergic synaptic transmission. Mol. Pharmacol. 64, 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Nabekura J., Katsurabayashi S., Kakazu Y., Shibata S., Matsubara A., Jinno S., et al. (2004) Development switch from GABA to glycine release in single central synaptic terminals. Nat. Neurosci. 7, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa S., Kamiya H., and Tsuzuki K. (1998) Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618.

    Article  PubMed  CAS  Google Scholar 

  • Park-Chung M., Malayev A., Purdy R. H., Gibbs T. T., and Farb D. H. (1999) Sulfated and unsulfated steroids modultate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 830, 72–87.

    Article  PubMed  CAS  Google Scholar 

  • Park-Chung M., Wu F. S., Purdy R. H., Malayev A. A., Gibbs T. T., and Farb D. H. (1997) Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol. Pharmacol. 52, 1113–1123.

    PubMed  CAS  Google Scholar 

  • Patte-Mensah C., Penning T. M., and Mensah-Nyagan A. G. (2004) Anatomical and cellular localization of neuroactive 5 alpha/3 alpha-reduced steroid-synthesizing enzymes in the spinal cord. J. Comp. Neurol. 477, 286–299.

    Article  PubMed  CAS  Google Scholar 

  • Patte-Mensah C., Kappes V., Freund-Mercier M. J., Tsutsui K., and Mensah-Nyagan A. G. (2003) Cellular distribution and bioactivity of the key steroidogenic enzyme, cytochrome P450side chain cleavage, in sensory neural pathways. J. Neurochem. 86, 1233–1246.

    PubMed  CAS  Google Scholar 

  • Pinna G., Uzunova V., Matsumoto K., Puia G., Mienville J. M., Costa E., and Guidotti A. (2000) Brain allopregnanolone regulates the potency of the GABA(A) receptor agonist muscimol. Neuropharmacology 39, 440–448.

    Article  PubMed  CAS  Google Scholar 

  • Poisbeau P., Feltz P., and Schlichter R. (1997) Modulation of GABAA receptor-mediated IPSCs by neuroactive steroids in a rat hypothalamo-hypophyseal coculture model. J. Physiol. 500 (Pt. 2), 475–485.

    PubMed  CAS  Google Scholar 

  • Puia G., Mienville J. M., Matsumoto K., Takahat H., Watanabe H., Costa E., and Guidotti A. (2003) On the putative physiological role of allopregnanoloneon GABA(A) receptor function. Neuropharmacology 44, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Qiu J., Bosch M. A., Tobias S. C., Grandy D. K., Scanlan T. S., Ronnekleiv O. K., and Kelly M. J. (2003) Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J. Neurosci. 23, 9529–9540.

    PubMed  CAS  Google Scholar 

  • Reddy D. S. and Rogawski M. A. (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J. Neurosci. 22, 3795–3805.

    PubMed  CAS  Google Scholar 

  • Reddy D. S., Castaneda D. C., O'Malley B. W., and Rogawski M. A. (2004) Anticonvulsant activity of progesterone and neurosteroids in progesterone receptor knockout mice. J. Pharmacol. Exp. Ther. 310, 230–239.

    Article  PubMed  CAS  Google Scholar 

  • Reddy D. S., O'Malley B. W., and Rogawski M. A. (2005) Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology 48, 14–24.

    Article  PubMed  CAS  Google Scholar 

  • Reith C. A. and Sillar K. T. (1997) Pre and postsynaptic modulation of spinal GABAergic neurotransmission by the neurosteroid, 5 beta-pregnan-3 alpha-ol-20-one. Brain Res. 770, 202–212.

    Article  PubMed  CAS  Google Scholar 

  • Robel P. and Baulieu E. E. (1994) Neurosteroids: biosynthesis and function. Trends Endocr. Metab 5, 1–8.

    Article  CAS  Google Scholar 

  • Rupprecht R. and Holsboer F. (1999a) Neuroactive steroids: mechanisms of action and neuropsychophar-macological perspectives. Trends Neurosci. 22, 410–416.

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R. and Holsboer F. (1999b) Neuropsy-chopharmacological properties of neuroactive steroids. Steroids 64, 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht R. Reul J. M., Trapp T., van Steensel B., Wetzel C., Damm K., et al. (1993) Progesterone receptor-mediated effects of neuroactive steroids. Neuron 11, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Saleh T. M., Connell B. J., McQuaid T., and Cribb A. E. (2003) Estrogen-induced neurochemical and electro-physiological changes in the parabrachial nucleus of the male rat. Brain Res. 990, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Sandkuhler J. (1996) The organization and function of endogenous antinociceptive systems. Prog. Neurobiol. 50, 49–81.

    PubMed  CAS  Google Scholar 

  • Sanna E., Talani G., Busonero F., Pisu M. G., Purdy R. H., Serra M., and Biggio G. (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J. Neurosci. 24, 6521–6530.

    Article  PubMed  CAS  Google Scholar 

  • Schlichter R., Rybalchenko V., Poisbeau P., Verleye M., and Gillardin J. (2000) Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine. Neuropharmacology 39, 1523–1535.

    Article  PubMed  CAS  Google Scholar 

  • Semyanov A., Walker M. C., Kullmann D. M., and Silver R. A. (2004) Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci 27, 262–269.

    Article  PubMed  CAS  Google Scholar 

  • Shen W., Mennerick S., Covey D. F., and Zorumski C. F. (2000) Pregnenolone sulfate modulates inhibitory synaptic transmission by enhancing GABA(A) receptor desensitization. J. Neurosci. 20, 3571–3579.

    PubMed  CAS  Google Scholar 

  • Shu H. J., Eisenman N., Jinadasa D., Covey D. F., Zorumski C. F., and Mennerick S. (2004) Slow actions of neuroactive steroids at GABAA receptors. J. Neurosci. 24, 6667–6675.

    Article  PubMed  CAS  Google Scholar 

  • Sierra A. (2004) Neurosteroids: the StAR protein in the brain. J. Neuroendocrinol. 16, 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Spivak V., Lin A., Beebe P., Stoll L., and Gentile L. (2004) Identification of a neurosteroid binding site contained within the GluR2-S1S2 domain. Lipids 39, 811–819.

    PubMed  CAS  Google Scholar 

  • Steffensen S. C. (1995) Dehydroepiandrosterone sulfate suppresses hippocampal recurrent inhibition and synchronizes neuronal activity to theta rhythm. Hippocampus 5, 320–328.

    Article  PubMed  CAS  Google Scholar 

  • Stoffel-Wagner B. (2003) Neurosteroid biosynthesis in the human brain and its clinical implications. Ann. N. Y. Acad. Sci. 1007, 64–78.

    Article  PubMed  CAS  Google Scholar 

  • Wang W., Wu D. C., Chen Y. H., He W., and Yu L. C. (2002) Anti-nociceptive effects of diazepam binding inhibitor in the central nervous system of rats. Brain Res. 956, 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Womble M. D., Andrew J. A., and Crook J. J. (2002) 17beta-Estradiol reduces excitatory postsynaptic potential (EPSP) amplitude in rat basolateral amygdala neurons. Neurosci. Lett. 331, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Wong M. and Moss R. L. (1992) Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J. Neurosci. 12, 3217–3225.

    PubMed  CAS  Google Scholar 

  • Wu F. S., Gibbs T. T., and Farb D. H. (1991) Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336.

    PubMed  CAS  Google Scholar 

  • Yaksh T. L., Hua X. Y., Kalcheva I., Nozaki-Taguchi N., and Marsala M. (1999) The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc. Natl. Acad. Sci. U. S. A. 96, 7680–7686.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y., Bond J., and Thomas P. (2003a) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. U. S. A. 100, 2237–2242.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y., Rice C. D., Pang Y., Pace M., and Thomas P. (2003b) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. U. S. A. 100, 2231–2236.

    Article  PubMed  CAS  Google Scholar 

  • Zwain I. H. and Yen S. S. (1999a) Dehy droepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology 140, 880–887.

    Article  PubMed  CAS  Google Scholar 

  • Zwain I. H. and Yen S. S. (1999b) Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140, 3843–3852.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Schlichter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlichter, R., Keller, A.F., De Roo, M. et al. Fast nongenomic effects of steroids on synaptic transmission and role of endogenous neurosteroids in spinal pain pathways. J Mol Neurosci 28, 33–51 (2006). https://doi.org/10.1385/JMN:28:1:33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:28:1:33

Index Entries

Navigation