Skip to main content
Log in

Carboxylation and anaplerosis in neurons and glia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Anaplerosis, or de novo formation of intermediates of the tricarboxylic acid (TCA) cycle, compensates for losses of TCA cycle intermediates, especially α-ketoglutarate, from brain cells. Loss of α-ketoglutarate occurs through release of glutamate and GABA from neurons and through export of glutamine from glia, because these amino acids are α-ketoglutarate derivatives. Anaplerosis in the brain may involve four different carboxylating enzymes: malic enzyme, phosphoenopyruvate carboxykinase (PEPCK), propionyl-CoA carboxylase, and pyruvate carboxylase. Anaplerotic carboxylation was for many years thought to occur only in glia through pyruvate carboxylase; therefore, loss of transmitter glutamate and GABA from neurons was thought to be compensated by uptake of glutamine from glia. Recently, however, anaplerotic pyruvate carboxylation was demonstrated in glutamatergic neurons, meaning that these neurons to some extent can maintain transmitter synthesis independently of glutamine. Malic enzyme, which may carboxylate pyruvate, was recently detected in neurons. The available data suggest that neuronal and glial pyruvate carboxylation could operate at as much as 30% and 40–60% of the TCA cycle rate, respectively. Cerebral carboxylation reactions are probably balanced by decarboxylation reactions, because cerebral CO2 formation equals O2 consumption. The finding of pyruvate carboxylation in neurons entails a major revision of the concept of the glutamine cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassel B. and Bråthe A. (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J. Neurosci. 20, 1342–1347.

    PubMed  CAS  Google Scholar 

  2. Hassel B. and Bråthe A. (2000) Cerebral metabolism of lactate in vivo. Evidence for neuronal pyruvate carboxylation. J. Cereb. Blood Flow Metab. 20, 327–336.

    PubMed  CAS  Google Scholar 

  3. Vogel R., Jennemann G., Seitz J., Wiesinger H., and Hamprecht B. (1998) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocyto-chemical localization in neurons of rat brain. J. Neurochem. 71, 844–852.

    Article  PubMed  CAS  Google Scholar 

  4. Cruz F., Scott S. R., Barroso I., Santisteban P., and Cerdan S. (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J. Neurochem. 70, 2613–2619.

    Article  PubMed  CAS  Google Scholar 

  5. McKenna M. C., Stevenson J. H., Huang X., Tildon J. T., Zielke C. L., and Hopkins I. B. (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem. Int. 36, 451–459.

    PubMed  CAS  Google Scholar 

  6. Hertz L., Dringen R., Schousboe A., and Robinson S. R. (1999) Astrocytes: glutamate producers for neurons. J. Neurosci. Res. 57, 417–428.

    PubMed  CAS  Google Scholar 

  7. Daikhin Y. and, Yudkoff M. (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 130 (Suppl), 1026S-1031S.

    PubMed  CAS  Google Scholar 

  8. Sokoloff L. (1989) Circulation and energy metabolism of the brain, in Basic Neurochemistry, 4th ed. (Siegel G., Agranoff B., Albers R. W., and Molinoff P., eds.), Raven Press, New York, pp. 565–590.

    Google Scholar 

  9. Miller L. P., Pardridge W. M., Braun L. D., and Oldendorf W. H. (1985) Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem. 45, 1427–1432.

    PubMed  CAS  Google Scholar 

  10. Braun L. D., Miller L. P., Pardridge W. M., and Oldendorf W. H. (1985) Kinetics of regional blood-brain barrier glucose transport and cerebral blood flow determined with the carotid injection technique in conscious rats. J. Neurochem. 44, 911–915.

    PubMed  CAS  Google Scholar 

  11. Life Technologies (1998) 1998/1999 Catalogue for GIBCOBRL Cell Culture products, pp. 2-46–2-47.

  12. Patel A. J. and Hunt A. (1985) Concentration of free amino acids in primary cultures of neurones and astrocytes. J. Neurochem. 44, 1816–1821.

    PubMed  CAS  Google Scholar 

  13. Hassel B., Sonnewald U., Unsgard G., and Fonnum F. (1994) NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J. Neurochem. 62, 2187–2194.

    Article  PubMed  CAS  Google Scholar 

  14. Crane R. K. and Ball E. G. (1951) Relationship of 14CO2 fixation to carbohydrate metabolism in retina. J. Biol. Chem. 189, 269–276.

    PubMed  CAS  Google Scholar 

  15. Moldave K., Winzler R. J., and Pearson H. E. (1953) The incorporation in vitro of C14 into amino acids of control and virus-infected mouse brain. J. Biol. Chem. 200, 357–365.

    PubMed  CAS  Google Scholar 

  16. Cheng S.-C. (1971) CO2 fixation in the nervous tissue, in International Review of Neurobiology, vol. 14 (Pfeiffer C. C. and Smythies J. R., eds.), Academic Press, New York, pp. 125–157.

    Google Scholar 

  17. Kurz G. M., Wiesinger H., and Hamprecht B. (1993) Purification of cytosolic malic enzyme from bovine brain, generation of monoclonal antibodies, and immunocytochemical localization of the enzyme in glial cells of neural primary cultures. J. Neurochem. 60, 1467–1474.

    PubMed  CAS  Google Scholar 

  18. McKenna M. C., Tildon J. T., Stevenson J. H., Huang X., and Kingwell K. G. (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem. Res. 12, 1491–501.

    Google Scholar 

  19. Russell R. R. III, and Taegtmeyer H. (1991) Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am. J. Physiol. 261, H1756-H1762.

    PubMed  CAS  Google Scholar 

  20. Shank R. P., Campbell G. L., Freytag S. O., and Utter M. F. (1981) Evidence that pyruvate carboxylase is an astrocyte specific enzyme in CNS tissues. Abstr. Soc. Neurosci. 7, 936.

    Google Scholar 

  21. Shank R. P., Bennett G. S., Freytag S. O., and Campbell G. L. (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329, 364–367.

    PubMed  CAS  Google Scholar 

  22. Yu A. C. H., Drejer J., Hertz L., and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41, 1484–1487.

    PubMed  CAS  Google Scholar 

  23. Cesar M. and Hamprecht B. (1995) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J. Neurochem. 64, 2312–2318.

    Article  PubMed  CAS  Google Scholar 

  24. Cheng S.-C. and Cheng R. H. (1972) A mitochondrial phosphoenolpyruvate carboxykinase from rat brain. Arch. Biochem. Biophys. 151, 501–511.

    PubMed  CAS  Google Scholar 

  25. Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem. 22, 717–724.

    PubMed  CAS  Google Scholar 

  26. Wiese T. J., Lambeth D. O., and Ray P. D. (1991) The intracellular distribution and activities of phosphoenolpyruvate carboxykinase isozymes in various tissues of several mammals and birds. Comp. Biochem. Physiol. B 100, 297–302.

    PubMed  CAS  Google Scholar 

  27. Schmoll D., Fuhrmann E., Gebhardt R., and Hamprecht B. (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur. J. Biochem. 227, 308–315.

    PubMed  CAS  Google Scholar 

  28. Rognstad R. (1982) 14CO2 fixation by phosphoenolpyruvate carboxykinase during glyconeogenesis in the intact rat liver cell. J. Biol. Chem. 257, 11,486–11,488.

    CAS  Google Scholar 

  29. Lane M. D., Chang H. C., and Miller R. S. (1969) Phosphoenolpyruvate carboxykinase from pig liver mitochondria, in Methods in Enzymology, vol. 13 (Lowenstein J. M., ed.), Academic Press, New York, pp. 270–277.

    Google Scholar 

  30. Kusakabe T., Maeda M., Hoshi N., Sugino T., Watanabe K., Fukuda T., and Suzuki T. (2000) Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells. J. Histochem. Cytochem. 48, 613–622.

    PubMed  CAS  Google Scholar 

  31. Cammer W. (1991) Immunostaining of carbamoylphosphate synthase II and fatty acid synthase in glial cells in rat, mouse, and hamster brains suggests roles for carbonic anhydrase in biosynthetic processes. Neurosci. Lett. 129, 247–250.

    PubMed  CAS  Google Scholar 

  32. Cammer W. and Downing M. (1991) Localization of the multifunctional protein CAD in astrocytes of rodent brain. J. Histochem. Cytochem. 39, 695–700.

    PubMed  CAS  Google Scholar 

  33. Sun D., Swaffield J. C., Johnston S. A., Milligan C. E., Zoeller R. T., and Schwartz L. M. (1997) Identification of a phylogenetically conserved Sug1 CAD family member that is differentially expressed in the mouse nervous system. J. Neurobiol. 33, 877–890.

    PubMed  CAS  Google Scholar 

  34. Appel S. H. and Silverberg D. H. (1968) Pyrimidine synthesis in tissue culture. J. Neurochem. 15, 1437–1443.

    PubMed  CAS  Google Scholar 

  35. Allsop J. and Watts R. W. (1983) Purine de novo synthesis in liver and developing rat brain, and the effect of some inhibitors of purine nucleotide interconversion. Enzyme 30, 172–180.

    PubMed  CAS  Google Scholar 

  36. Pardridge W. M. and Oldendorf W. H. (1977) Transport of metabolic substrates through the blood-brain barrier. J. Neurochem. 28, 5–12.

    PubMed  CAS  Google Scholar 

  37. Lahoya J. L., Benavides J., and Ugarte M. (1980) Glycine metabolism and glycine synthase activity during the postnatal development of rat brain. Dev. Neurosci. 3, 75–80.

    PubMed  CAS  Google Scholar 

  38. Sato K., Yoshida S., Fujiwara K., Tada K., and Tohyama M. (1991) Glycine cleavage system in astrocytes. Brain Res. 567, 64–70.

    PubMed  CAS  Google Scholar 

  39. Cheng S.-C. and Nakamura R. (1972) Metabolism related to the tricarboxylic acid cycle in rat brain slices. Observations on CO2 fixation and metabolic compartmentation. Brain Res. 38, 355–370.

    PubMed  CAS  Google Scholar 

  40. Salganicoff L. and Koeppe R. E. (1968) Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J. Biol. Chem. 243, 3416–3420.

    PubMed  CAS  Google Scholar 

  41. Wolever T. M., Josse R. G., Leiter L. A., and Chiasson J. L. (1997) Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism 46, 805–811.

    PubMed  CAS  Google Scholar 

  42. Suchy S. F. and Wolf B. (1986) Effect of biotin deficiency and supplementation on lipid metabolism in rats: cholesterol and lipoproteins. Am. J. Clin. Nutr. 43, 831–838.

    PubMed  CAS  Google Scholar 

  43. Rodriguez-Pombo P., Sweetman L., and Ugarte M. (1992) Primary cultures of astrocytes from rat as a model for biotin deficiency in nervous tissue. Mol. Chem. Neuropathol. 16, 33–44.

    Article  PubMed  CAS  Google Scholar 

  44. Murthy C. R. and Hertz L. (1987) Acute effect of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures. J. Neurochem. 49, 735–741.

    PubMed  CAS  Google Scholar 

  45. Bixel M. G. and Hamprecht B. (2000) Immunocytochemical localization of beta-methyl-crotonyl-CoA carboxylase in astroglial cells and neurons in culture. J. Neurochem. 74, 1059–1067.

    PubMed  CAS  Google Scholar 

  46. Buniatian H. C. and Davtian M. A. (1966) Urea synthesis in brain. J. Neurochem. 13, 743–753.

    PubMed  CAS  Google Scholar 

  47. Braissant O., Gotoh T., Loup M., Mori M., and Bachmann C. (1999) L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study. Brain. Res. Mol. Brain Res. 70, 231–241.

    PubMed  CAS  Google Scholar 

  48. Furie B., Bouchard B. A., and Furie B. C. (1999) Vitamin K-dependent biosynthesis of γ-carboxyglutamic acid. Blood 93, 1798–1808.

    PubMed  CAS  Google Scholar 

  49. Stenflo J., Ferlund P., Egan W., and Roepstorff P. (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl. Acad. Sci. USA 71, 2730–2733.

    PubMed  CAS  Google Scholar 

  50. Price P. A. and Williamson M. K. (1985) Primary structure of bovine matrix Gla protein, a new vitamin K-dependent bone protein. J. Biol. Chem. 260, 14971–14975.

    PubMed  CAS  Google Scholar 

  51. Manfioletti G., Brancolini C., Avanzi G., and Schneider C. (1993) The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol. Cell. Biochem. 13, 4976.

    CAS  Google Scholar 

  52. Nakano T., Kawamoto K., Kishino J., Nomura K., Higashino K., and Arita H. (1997) Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem. J. 323, 387–392.

    PubMed  CAS  Google Scholar 

  53. de Boer-van den Berg M. A., Thijssen H. H., and Vermeer C. (1986) The in vivo effects of acenocoumarol, phenprocoumon and warfarin on vitamin K epoxide reductase and vitamin K-dependent carboxylase in various tissues of the rat. Biochim. Biophys. Acta 884, 150–157.

    PubMed  Google Scholar 

  54. Prieto A. L., Weber J. L., Tracy S., Heeb M. J., and Lai C. (1999) Gas6, a ligand for the receptor protein-tyrosine kinase Tyro-3, is widely expressed in the central nervous system. Brain Res. 816, 646–661.

    PubMed  CAS  Google Scholar 

  55. Kulman J. D., Harris J. E., Haldeman B. A., and Davie E. W. (1997) Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc. Natl. Acad. Sci. USA 94, 9058–9062.

    PubMed  CAS  Google Scholar 

  56. Pati S. and Helmbrecht G. D. (1994) Congenital schizencephaly associated with in utero warfarin exposure. Reprod. Toxicol. 8, 115–120.

    PubMed  CAS  Google Scholar 

  57. Brown M. A., Stenberg L. M., Persson U., and Stenflo J. (2000) Identification and purification of vitamin K-dependent proteins and peptides with monoclonal antibodies specific for gamma -carboxyglutamyl (Gla) residues. J. Biol. Chem. 275, 19,795–19,802.

    CAS  Google Scholar 

  58. Waelsch H., Berl S., Rossi C. A., Clarke D. D., and Purpura D. P. (1964) Quantitative aspects of CO2 fixation in mammalian brain in vivo. J. Neurochem. 11, 717–728.

    PubMed  CAS  Google Scholar 

  59. Henn F. A., Goldstein M. N., and Hamberger A. (1974) Uptake of the neurotransmitter candidate glutamate by glia. Nature 249, 663–664.

    PubMed  CAS  Google Scholar 

  60. Divac I., Fonnum F., and Storm-Mathisen J. (1977) High affinity uptake of glutamate in terminals of corticostriatal axons. Nature 266, 377–378.

    PubMed  CAS  Google Scholar 

  61. Haugeto O., Ullensvang K., Levy L. M., Chaudhry F. A., Honoré T., Nielsen M., et al. (1996) Brain glutamate transporter proteins form homomultimers. J. Biol. Chem. 271, 27,715–27,722.

    Google Scholar 

  62. Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., et al. (1990) Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306.

    PubMed  CAS  Google Scholar 

  63. Radian R., Ottersen O. P., Storm-Mathisen J., Castel M., and Kanner B. I. (1990) Immunocytochemical localization of the GABA transporter in rat brain. J. Neurosci. 10, 1319–1330.

    PubMed  CAS  Google Scholar 

  64. Balázs R., Machiyama Y., Hammond B. J., Julian T., and Richter D. (1970) The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem. J. 116, 445–461.

    PubMed  Google Scholar 

  65. Hassel B., Paulsen R. E., Johnsen A., and Fonnum F. (1992) Selective inhibition of glial cell metabolism in vivo by fluorocitrate. Brain Res. 576, 120–124.

    PubMed  CAS  Google Scholar 

  66. Hassel B., Sonnewald U., and Fonnum F. (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose. An ex vivo 13C NMR spectroscopic study. J. Neurochem. 64, 2773–2782.

    Article  PubMed  CAS  Google Scholar 

  67. Berl S., Takagaki G., Clarke D. D., and Waelsch H. (1962) Metabolic compartments in vivo. J. Biol. Chem. 237, 2562–2569.

    PubMed  CAS  Google Scholar 

  68. Lee W. J., Hawkins R. A., Vina J. R., and Peterson D. R. (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am. J. Physiol. 274, C1101-C1107.

    PubMed  CAS  Google Scholar 

  69. Grill V., Bjorkman O., Gutniak M., and Lindqvist M. (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release fornitrogen balance. Metabolism 41, 28–32.

    PubMed  CAS  Google Scholar 

  70. Bradford H. F., Ward H. K., and Thomas A. J. (1978) Glutamine: a major substrate for nerve endings. J. Neurochem. 30, 1453–1460.

    PubMed  CAS  Google Scholar 

  71. Zielke H. R., Collins R. M., Jr., Baab P. J., Huang Y., Zielke C. L., and Tildon J. T. (1998) Compartmentation of [14C]glutamate and [14C]glutamine oxidative metabolism in the rat hippocampus as determined by microdialysis. J. Neurochem. 71, 1315–1320.

    Article  PubMed  CAS  Google Scholar 

  72. Cotman C. W. and Hamberger A. C. (1978) Glutamate as a CNS neurotransmitter: properties of release, inactivation and biosynthesis, in Amino Acids as Chemical Transmitters (Fonnum F., ed.), Plenum Press, New York, pp. 379–412.

    Google Scholar 

  73. Hamberger A. C., Chiang G. H., Nylén E. S., Scheff S. W., and Cotman C. W. (1979) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of the preferentially released glutamate. Brain Res. 168, 513–530.

    PubMed  CAS  Google Scholar 

  74. Tapia R. and Gonzalez M. (1978) Glutamine and glutamate as precursors of the releasable pool of GABA in brain cortex slices. Neurosci. Lett. 10, 165–169.

    CAS  PubMed  Google Scholar 

  75. Hassel B., Bachelard H. S., Jones P., Fonnum F., and Sonnewald U. (1997) Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial meabolism by fluoroacetate. J. Cereb. Blood Flow Metab. 17, 1230–1238.

    PubMed  CAS  Google Scholar 

  76. Sonnewald U., Westergaard N., Krane J., Unsgard G., Petersen S. B., and Schousboe A. (1991) First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci. Lett. 128, 235–239.

    PubMed  CAS  Google Scholar 

  77. Westergaard N., Sonnewald U., Unsgard G., Peng L., Hertz L., and Schousboe A. (1994) Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures. J. Neurochem. 62, 1727–1733.

    Article  PubMed  CAS  Google Scholar 

  78. Hassel B., Westergaard N., Schousboe A., and Fonnum F. (1995) Metabolic differences between primary cultures of astrocytes and neurons from cerebellum and cerebral cortex. Effects of fluorocitrate. Neurochem. Res. 20, 413–420.

    PubMed  CAS  Google Scholar 

  79. Gatfield P. D., Lowry O. H., Schulz D. W., and Passonneau J. V. (1996) Regional energy reserves in mouse brain and changes with ischaemia and anaesthesia. J. Neurochem. 13, 185–195.

    Google Scholar 

  80. Martinez-Hernandez A., Bell K. P., and Norenberg M. D. (1977) Glutamine synthetase: glial localization in brain. Science 195, 1356–1358.

    PubMed  CAS  Google Scholar 

  81. Tansey F. A., Farooq M., and Cammer W. (1991) Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J. Neurochem. 56, 266–272.

    PubMed  CAS  Google Scholar 

  82. Sonnewald U., Westergaard N., Petersen S. B., Unsgard G., and Schousboe A. (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMRspectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J. Neurochem. 61, 1179–1182.

    PubMed  CAS  Google Scholar 

  83. McKenna M. C., Sonnewald U., Huang X., Stevenson J., and Zielke H. R. (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66, 386–393.

    Article  Google Scholar 

  84. Hertz L. (1979) Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13, 277–323.

    PubMed  CAS  Google Scholar 

  85. Thanki C. M., Sugden D., Thomas N. J., and Bradford H. F. (1983) In vivo release from cerebral cortex of [14C]glutamate synthesized from [U-14C]glutamine. J. Neurochem. 41, 611–617.

    PubMed  CAS  Google Scholar 

  86. Fonnum F. (1991) Neurochemical studies on glutamate-mediated neurotransmission, in Excitatory Amino Acids, FIDIA Research Foundation Symposium Series, vol. 5 (Meldrum B. S., Moroni F., Simon R. P., and Woods J. H., eds.), Raven Press, New York, pp. 15–25.

    Google Scholar 

  87. Najlerahim A., Harrison P. J., Barton A. J., Heffernan J., and Pearson R. C. (1990) Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Brain Res. Mol. Brain Res. 7, 317–333.

    PubMed  CAS  Google Scholar 

  88. Kaneko T. and Mizuno N. (1994) Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience 61, 839–849.

    PubMed  CAS  Google Scholar 

  89. Ottersen O. P., Takumi Y., Matsubara A., Landsend A. S., Laake J. H. and Usami S. (1998) Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog. Neurobiol. 54, 127–148.

    PubMed  CAS  Google Scholar 

  90. Laake J. H., Takumi Y., Eidet J., Torgner I. A., Roberg B., Kvamme E., and Ottersen O. P. (1999) Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88, 1137–1151.

    PubMed  CAS  Google Scholar 

  91. Van den Berg C. J. (1973) A model of compartmentataion in mouse brain based on glucose and acetate metabolism, in Metabolic Compartmentation in the Brain (Balazs R. and Cremer J. E., eds.), MacMillan, London, pp. 137–166.

    Google Scholar 

  92. Nicklas W. J. and Clarke D. D. (1969) Decarboxylation studies of glutamate, glutamine, and aspartate from brain labelled with [1-14C]acetate, L-[U-14C]-aspartate, and L-[U-14C]glutamate. J. Neurochem. 16, 549–558.

    PubMed  CAS  Google Scholar 

  93. Clarke D. D. and Berl S. (1973) Alteration in the expression of compartmentation: in vitro studies, in Metabolic Compartmentation in the Brain (Balazs R., and Cremer J. E., eds.), MacMillan, London, pp. 97–106.

    Google Scholar 

  94. Hassel B. and Sonnewald U. (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates. Implications for the inactivation of transmitter amino acids? J. Neurochem. 65, 2227–2234.

    Article  PubMed  CAS  Google Scholar 

  95. Cerdan S., Kunnecke B., and Seelig J. (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J. Biol. Chem. 265, 12,916–12,926.

    CAS  Google Scholar 

  96. O’Neal R. M. and Koeppe R. E. (1966) Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J. Neurochem. 13, 835–847.

    PubMed  CAS  Google Scholar 

  97. Bakken I. J., Sonnewald U., Clark J. B., and Bates T. E. (1997) [U-13C]glutamate metabolism in rat brain mitochondria reveals malic enzyme activity. Neuroreport 8, 1567–1570.

    PubMed  CAS  Google Scholar 

  98. Bakken I. J., White L. R., Aasly J., Unsgard G., and Sonnewald U. (1997) Lactate formation from [U-13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci. Lett. 237, 117–120.

    PubMed  CAS  Google Scholar 

  99. Bouzier A. K., Thiaudiere E., Biran M., Rouland R., Canioni P., and Merle M. (2000) The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment. J. Neurochem. 75, 480–486.

    PubMed  CAS  Google Scholar 

  100. Merle M., Martin M., Villegier A., and Canioni P. (1996) [1-13C]glucose metabolism in brain cells: isotopomer analysis of glutamine from cerebellar astroyctes and glutamate from granule cells. Dev. Neurosci. 18, 460–468.

    Google Scholar 

  101. Shank R. P., Leo G. C., and Zielke H. R. (1993) Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J. Neurochem. 61, 315–323.

    PubMed  CAS  Google Scholar 

  102. Lapidot A. and Gopher A. (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. J. Biol. Chem. 269, 27,198–27,208.

    CAS  Google Scholar 

  103. Aureli T., Di Cocco M. E., Calvani M., and Conti F. (1997) The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy. Brain Res. 765, 218–227.

    PubMed  CAS  Google Scholar 

  104. Waniewski R. A. and Martin D. L. (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. 18, 5225–5233.

    PubMed  CAS  Google Scholar 

  105. Cheng S.-C., Naruse H., and Brunner E. A. (1978) Effects of sodium thiopental on the tricarboxylic acid cycle metabolism in mouse brain: CO2 fixation and metabolic compartmentation. J. Neurochem. 30, 1591–1593.

    PubMed  CAS  Google Scholar 

  106. Berl S., Takagaki G., Clark D. D., and Waelsch H. (1962) Carbon dioxide fixation in the brain. J. Biol. Chem. 237, 2570–2573.

    PubMed  CAS  Google Scholar 

  107. Hassel B., Johannessen C. U., Sonnewald U., and Fonnum F. (1998) Quantification of the GABA shunt and the importance of the GABA shunt versus the 2-oxoglutarate dehydrogenase pathway in GABAergic neurons. J. Neurochem. 71, 1511–1518.

    Article  PubMed  CAS  Google Scholar 

  108. Mason G. F., Rothman D. L., Behar K. L., and Shulman R. G. (1992) NMR determination of the TCA cycle rate and alpha-2ketoglutarate/glutamate exchange rate in rat brain. J. Cereb. Blood Flow Metab. 12, 434–447.

    PubMed  CAS  Google Scholar 

  109. Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G., and Novotny E. J. (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J. Cereb. Blood Flow Metab. 15, 12–25.

    PubMed  CAS  Google Scholar 

  110. Fitzpatrick S. M., Hetherington H. P., Behar K. L., and Shulman R. G. (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J. Cereb. Blood Flow Metab. 10, 170–179.

    PubMed  CAS  Google Scholar 

  111. Miller A. K., Alston R. L., and Corsellis J. A. (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol. Appl. Neurobiol. 6, 119–132.

    Article  PubMed  CAS  Google Scholar 

  112. Robins E., Smith D. E., Eydt K. M., and McCaman R. E. (1956) The quantitative histochemistry of the cerebral cortex-II. Architectonic distribution of nine enzymes in the motor and visual cortices. J. Neurochem. 1, 68–76.

    PubMed  CAS  Google Scholar 

  113. Mason G. F., Pan J. W., Chu W. J., Newcomer B. R., Zhang Y., Orr R., and Hetherington H. P. (1999) Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by H-[13C] magnetic resonance spectroscopy at 4.1 T. J. Cereb. Blood Flow Metab. 19, 1179–1188.

    PubMed  CAS  Google Scholar 

  114. Pardridge W. M. (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol. Rev. 63, 1481–1535.

    PubMed  CAS  Google Scholar 

  115. Westergaard N., Varming T., Peng L., Sonnewald U., Hertz L., and Schousboe A. (1993) Uptake, release, and metabolism of alanine in neurons and astrocytes in primary cultures. J. Neurosci. Res. 35, 540–545.

    PubMed  CAS  Google Scholar 

  116. Erecinska M., Nelson D., Nissim I., Daikhin Y., and Yudkoff M. (1994) Cerebral alanine transport and alanine aminotransferase reaction: alanine as a source of neuronal glutamate. J. Neurochem. 62, 1953–1964.

    Article  PubMed  CAS  Google Scholar 

  117. Hutson S. M., Berkich D., Drown P., Xu B., Aschner M., and LaNoue K. F. (1998) Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J. Neurochem. 71, 863–874.

    Article  PubMed  CAS  Google Scholar 

  118. McKenna M. C., Stevenson J. H., Huang X., and Hopkins I. B. (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem. Int. 37, 229–241.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassel, B. Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 22, 21–40 (2000). https://doi.org/10.1385/MN:22:1-3:021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:22:1-3:021

Index Entries

Navigation