Skip to main content
Log in

The molecular pathology of rett syndrome

Synopsis and update

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Genetic mutations of the X-linked gene MECP2, encoding methyl-CpG-binding protein 2, cause Rett syndrome (RTT) and other neurological disorders. It is increasingly recognized that MECP2 is a multifunctional protein, with at least four different functional domains: (1) a methyl-CpG-binding domain; (2) an arginine-glycine repeat RNA-binding domain; (3) a transcriptional repression domain; and (4) an RNA splicing factor binding region (WW group II binding domain).

There is evidence that MECP2 is important for large-scale reorganization of pericentromeric heterochromatin during differentiation. Studies in MECP2-deficient mouse brain have identified a diverse set of genes with altered levels of mRNA expression or splicing. It is still unclear how altered MECP2 function ultimately results in neuronal disease after a period of grossly normal development.

However, mounting evidence suggests that neuronal health and development depend on precise regulation of MECP2 expression. In genetically engineered mice, both increased and decreased levels of MECP2 result in a neurological phenotype. Furthermore, it was recently discovered that MECP2 gene duplications underlie a small number of atypical Rett cases and mental retardation syndromes. The finding that MECP2 levels are tightly regulated in neurons has important implications for the design of gene replacement or reactivation strategies for treatment of RTT, because affected individuals typically are somatic mosaics with one set of cells expressing a mutated MECP2 from the affected X, and another set expressing normal MECP2 from the unaffected X. Further studies are necessary to elucidate the molecular pathology of both loss-of-function and gain-of-function mutations in MECP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aber K. M., Nori P., MacDonald S. M., Bibat G., Jarrar M. H., and Kaufmann W. E. (2003) Methyl-CpG-binding protein 2 is localized in the postsynaptic compartment: an immunochemical study of subcellular fractions. Neuroscience 116, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S. (2003) The neurobiology of Rett syndrome. Neuroscientist 9, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S., Chen R. Z., Gribnau J., et al. (2001) Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex. Neurobiol. Dis. 8, 784–791.

    Article  PubMed  CAS  Google Scholar 

  • Amir R. E., Van den Veyver I. B., Wan M., Tran C. Q., Francke U., and Zoghbi H. Y. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Ariani F., Mari F., Pescucci C., et al. (2004) Real-time quantitative PCR as a routine method for screening large rearrangements in Rett syndrome: Report of one case of MECP2 deletion and one case of MECP2 duplication. Hum. Mutat. 24, 172–177.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D., Dunn J. K., Antalffy B., and Trivedi R. (1995) Selective dendritic alterations in the cortex of Rett syndrome. J. Neuropathol. Exp. Neurol. 54, 195–201.

    PubMed  CAS  Google Scholar 

  • Armstrong D. D., Dunn J. K., Schultz R. J., Herbert D. A., Glaze D. G., and Motil K. J. (1999) Organ growth in Rett syndrome: a postmortem examination analysis. Pediatr. Neurol. 20, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Ballas N., Grunseich C., Lu D. D., Speh J. C., and Mandel G. (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657.

    Article  PubMed  CAS  Google Scholar 

  • Balmer D., Goldstine J., Rao Y. M., and LaSalle J. M. (2003) Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation. J. Mol. Med. 81, 61–68.

    PubMed  CAS  Google Scholar 

  • Bauman M. L., Kemper T. L., and Arin D. M. (1995) Microscopic observations of the brain in Rett syndrome. Neuropediatrics 26, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Bedford M. T., Chan D. C., and Leder P. (1997) FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. Embo. J. 16, 2376–2383.

    Article  PubMed  CAS  Google Scholar 

  • Brero A., Easwaran H. P., Nowak D., et al. (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J. Cell Biol. 169, 733–743.

    Article  PubMed  CAS  Google Scholar 

  • Buschdorf J. P. and Stratling W. H. (2004) A WW domain binding region in methyl-CpG-binding protein MeCP2: impact on Rett syndrome. J. Mol. Med. 82, 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Carro S., Bergo A., Mengoni M., et al. (2004) A novel protein, Xenopus p20, influences the stability of McCP2 through direct interaction. J. Biol. Chem. 279, 25,623–25,631.

    Article  CAS  Google Scholar 

  • Chen R. Z., Akbarian S., Tudor M., and Jaenisch R. (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Chen W. G., Chang Q., Lin Y., et al. (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889.

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou J., Grimm A., Maher T., and Bennetts B. (2003) Rett BASE: The IRSA MECP2 variation database-a new mutation database in evolution. Hum. Mutat. 21, 466–472.

    Article  PubMed  CAS  Google Scholar 

  • Cohen D., Lazar G., Couvert P., et al. (2002) MECP2 mutation in a boy with language disorder and schizophrenia. Am. J. Psychiatry 159, 148–149.

    Article  PubMed  Google Scholar 

  • Colantuoni C., Jeon O. H., Hyder K., et al. (2001) Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8, 847–865.

    Article  PubMed  CAS  Google Scholar 

  • Collins A. L., Levenson J. M., Vilaythong A. P., et al. (2004) Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi K., Antalffy B. A., Twohill L. J., Chakraborty S., Glaze D. G., and Armstrong D. D. (2000) Substance P immunoreactivity in Rett syndrome. Pediatr. Neurol. 22, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Dintilhac A. and Bernues J. (2002) HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. J. Biol. Chem. 277, 7021–7028.

    Article  PubMed  CAS  Google Scholar 

  • Georgel P. T., Horowitz-Scherer R. A., Adkins N., Woodcock C. L., Wade P. A., and Hansen J. C. (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J. Biol. Chem. 278, 32,181–32,188.

    Article  CAS  Google Scholar 

  • Guy J., Hendrich B., Holmes M., Martin J. E., and Bird A. (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326.

    Article  PubMed  CAS  Google Scholar 

  • Hagberg B. (1995) Rett syndrome: clinical peculiarities and biological mysteries. Acta Paediatr. 84, 971–976.

    PubMed  CAS  Google Scholar 

  • Hagberg B. (2002) Clinical manifestations and stages of Rett syndrome. Ment. Retard. Dev. Distabil. Res. Rev. 8, 61–65.

    Article  Google Scholar 

  • Harikrishnan K. N., Chow M. Z., Baker E. K. et al. (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37, 254–264.

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B. and Tweedie S. (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Horike S., Cai S., Miyano M., Cheng J. F., and Kohwi-Shigematsu T. (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Iwasato T., Erzurumlu R. S., Huerta P. T., et al. (1997) NMDA receptor-dependent refinement of somatotopic maps. Neuron 19, 1201–1210.

    Article  PubMed  CAS  Google Scholar 

  • Jeffery L. and Nakielny S. (2004) Components of the DNA methylation system of chromatin control are RNA-binding proteins. J. Biol. Chem. 279, 49,479–49,487.

    Article  CAS  Google Scholar 

  • Jung B. P., Jugloff D. G., Zhang G., Logan R., Brown S., and Eubanks J. H. (2003) The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J. Neurobiol. 55, 86–96.

    Article  PubMed  CAS  Google Scholar 

  • Kaludov N. K. and Wolffe A. P. (2000) MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 28, 1921–1928.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann W. E., Johnston M. V., and Blue M. E. (2005) MeCP2 expression and function during brain development: implications for Rett syndrome's pathogenesis and clinical evolution. Brain Dev. 27(Suppl. 1), S77-S87.

    Article  PubMed  Google Scholar 

  • Kerr A. M., Nomura Y., Armstrong D., et al. (2001) Guidelines for reporting clinical features in cases with MECP2 mutations. Brain Dev. 23, 208–211.

    Article  PubMed  CAS  Google Scholar 

  • Kimura H. and Shiota K. (2003) Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J. Biol. Chem. 278, 4806–4812.

    Article  PubMed  CAS  Google Scholar 

  • Klose R. J., Sarraf S. A., Schmiedeberg L., McDermott S. M., Stancheva I., and Bird A. P. (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol. Cell 19, 667–678.

    Article  PubMed  CAS  Google Scholar 

  • Kokura K., Kaul S. C., Wadhwa R., et al. (2001) The Ski protein family is required for MeCP2-mediated transcriptional repression. J. Biol. Chem. 276, 34,115–34,121.

    Article  CAS  Google Scholar 

  • Kriaucionis S. and Bird A. (2004) The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res. 32, 1818–1823.

    Article  PubMed  CAS  Google Scholar 

  • Krithivas A., Fujimuro M., Weidner M., Young D. B., and Hayward S. D. (2002) Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J. Virol. 76, 11,596–11,604.

    Article  CAS  Google Scholar 

  • Lee S. S., Wan M., and Francke U. (2001) Spectrum of MECP2 mutations in Rett syndrome. Brain Dev. 23(Suppl. 1), S138-S143.

    PubMed  Google Scholar 

  • Lehnertz B., Ueda Y., Derijck A. A., et al. (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  • Lewis J. D., Meehan R. R., Henzel W. J., et al. (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914.

    Article  PubMed  CAS  Google Scholar 

  • Luikenhuis S., Giacometti E., Beard C. F., and Jaenisch R. (2004) Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl. Acad. Sci. USA 101, 6033–6038.

    Article  PubMed  CAS  Google Scholar 

  • Macias M. J., Wiesner S., and Sudol M. (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 513, 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L. (1985) Indications of centromere movement during interphase and differentiation. Ann. NY Acad. Sci. 450 205–221.

    Article  PubMed  CAS  Google Scholar 

  • Martinowich K., Hattori D., Wu H., et al. (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893.

    Article  PubMed  CAS  Google Scholar 

  • Martou G. and De Boni U. (2000) Nuclear topology of murine, cerebellar Purkinje neurons: changes as a function of development. Exp. Cell Res. 256, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Matarazzo V. and Ronnett G. V. (2004) Temporal and regional differences in the olfactory proteome as a consequence of MeCP2 deficiency. Proc. Natl. Acad. Sci. USA 101, 7763–7768.

    Article  PubMed  CAS  Google Scholar 

  • Meins M., Lehmann J., Gerresheim, F., et al. (2005) Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42, e12.

    Article  PubMed  CAS  Google Scholar 

  • Miltenberger-Miltenyi G. and Laccone F. (2003) Mutations and polymorphisms in the human methyl CpG-binding protein MECP2. Hum. Mutat. 22, 107–115.

    Article  PubMed  CAS  Google Scholar 

  • Mnatzakanian G. N., Lohi H., Munteanul I., et al. (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat. Genet. 36, 339–341.

    Article  PubMed  CAS  Google Scholar 

  • Moog U., Roozendaal K. V., Smeets E., et al. (2005) MECP2 mutations are an infrequent cause of mental retardation associated with neurological problems in male patients. Brain Dev. (e-pubahead of print)

  • Moretti P., Levenson J. M., Battaglia F., et al. (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J. Neurosci. 26, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Mullaney B. C., Johnston M. V., and Blue M. E. (2004) Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Nagai K., Miyake K., and Kubota T. (2005) A transcriptional repressor MeCP2 causing Rett syndrome is expressed in embryonic non-neuronal cells and controls their growth. Brain. Res. Dev. Brain Res. 157, 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Naidu S., Bibat G., Kratz L., et al. (2003) Clinical variability in Rett syndrome. J. Child Neurol. 18, 662–668.

    PubMed  Google Scholar 

  • Nan X., Meehan, R. R., and Bird A. (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21, 4886–4892.

    Article  PubMed  CAS  Google Scholar 

  • Nan X., Tate P., Li E., and Bird A. (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell Biol. 16, 414–421.

    PubMed  CAS  Google Scholar 

  • Nan X., Ng H. H., Johnson C. A., et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Nuber U. A., Kriaucionis S., Roloff T. C., et al. (2005) Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum. Mol. Genet. 14, 2247–2256.

    Article  PubMed  CAS  Google Scholar 

  • Paterson D. S., Thompson E. G., Belliveau R. A., et al. (2005) Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. J. Neuropathol. Exp. Neurol. 64, 1018–1027.

    PubMed  CAS  Google Scholar 

  • Percy A. K. (1997) Neurobiology and neurochemistry of Rett syndrome. Eur. Child Adolesc. Psychiatry 6(Suppl. 1), 80–82.

    PubMed  Google Scholar 

  • Percy A. K. and Lane J. B. (2004) Rett syndrome: clinical and molecular update. Curr. Opin. Pediatr. 16, 670–677.

    Article  PubMed  Google Scholar 

  • Samaco R. C., Hogart A., and LaSalle J. M. (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum. Mol. Genet. 14, 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Saxena A., de Lagarde D., Leonard H., et al. (2005) Lost in translation: Translational interference from a recurrent mutation in exon 1 of MECP2. J. Med. Genet. (e-pub ahead of print)

  • Schanen C., Houwink E. J., Dorrani N., et al. (2004) Phenotypic manifestations of MECP2 mutations in classical and atypical Rett syndrome. Am. J. Med. Genet. A 126, 129–140.

    Article  PubMed  Google Scholar 

  • Schultz R. J., Glaze D. G., Motil K. J., et al. (1993) The pattern of growth failure in Rett syndrome. Am. J. Dis. Child 147, 633–637.

    PubMed  CAS  Google Scholar 

  • Shahbazian M. D., Antalffy B., Armstrong D. L., and Zoghbi H. Y. (2002) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 11, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Shi J., Shibayama A., Liu Q., et al. (2005) Detection of heterozygous deletions and duplications in the MECP2 gene in Rett syndrome by Robust Dosage PCR (RD-PCR). Hum. Mutat. 25, 505.

    Article  PubMed  Google Scholar 

  • Skabkin M. A., Kiselyova O. I., Chernov K. G., et al. (2004) Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res. 32, 5621–5635.

    Article  PubMed  CAS  Google Scholar 

  • Stickeler E., Fraser S. D., Honig A., Chen A. L., Berget S. M., and Cooper T. A. (2001) The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. Embo. J. 20, 3821–3830.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam B., Naidu S., and Reiss A. L. (1997) Neuroanatomy in Rett syndrome: cerebral cortex and posterior fossa. Neurology 48, 399–407.

    PubMed  CAS  Google Scholar 

  • Suzuki M., Yamada T., Kihara-Negishi F., Sakurai T., and Oikawa T. (2003) Direct association between PU.1 and MeCP2 that recruits mSin3A-HDAC complex for PU.1-mediated transcriptional repression. Oncogene 22, 8688–8698.

    Article  PubMed  CAS  Google Scholar 

  • Tudor M., Akbarian S., Chen R.Z., and Jaenisch R. (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transciptional changes in the brain. Proc. Natl. Acad. Sci. USA 99, 15,536–15,541.

    Article  CAS  Google Scholar 

  • Van den Veyver I. B. and Zoghbi H. Y. (2002) Genetic basis of Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 8, 82–86.

    Article  PubMed  Google Scholar 

  • Van Esch H., Bauters M., Ignatius J., et al. (2005) Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77, 442–453.

    Article  PubMed  Google Scholar 

  • Viemari J. C., Roux J. C., Tryba A. K., et al. (2005) Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J. Neurosci. 25, 11,521–11,530.

    Article  CAS  Google Scholar 

  • Watson P., Black G., Ramsden S., et al. (2001) Angelman syndrome phenotype associated with mutations in MECP2 a gene encoding a methyl CpG binding protein. J. Med. Genet. 38, 224–228.

    Article  PubMed  CAS  Google Scholar 

  • Young J. I., Hong E. P., Castle J. C., et al. (2005) Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc. Natl. Acad. Sci. USA 102, 17,551–17,558.

    CAS  Google Scholar 

  • Zeev B. B., Yaron Y., Schanen N. C., et al. (2002) Rett syndrome: clinical manifestations in males with MECP2 mutations. J. Child Neurol. 17, 20–24.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schahram Akbarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarian, S., Jiang, Y. & Laforet, G. The molecular pathology of rett syndrome. Neuromol Med 8, 485–494 (2006). https://doi.org/10.1385/NMM:8:4:485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:8:4:485

Index Entries

Navigation