Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 21, 2013

Progress in demystification of adhesion G protein-coupled receptors

  • Ines Liebscher

    Ines Liebscher studied medicine at the University of Leipzig. After completing her MD thesis at the Institute for Biochemistry at the Medical Faculty on the physiological relevance of an orphan GPCR she pursued a scientific career. The current focus of her research is the field of adhesion GPCR, which she studies in vitro and in vivo using transgenic mouse models. Ines Liebscher is currently leading a group in the Institute of Biochemistry at University of Leipzig.

    , Torsten Schöneberg

    Torsten Schöneberg studied medicine at the University of Greifswald, is professor of Molecular Biochemistry and leads the Institute for Biochemistry at the Medical Faculty of University of Leipzig, Germany. After completing his MD thesis at the Institute of Pharmacology at the Charité, Humboldt University of Berlin, he focused on GPCR and their signal transduction in the laboratories of J. Wess (NIDDK, NIH, Bethesda) and G. Schultz (Free University of Berlin) as a postdoc.

    EMAIL logo
    and Simone Prömel

    Simone Prömel studied biochemistry at the Free University of Berlin and is a junior group leader at the Institute for Biochemistry, Medical Faculty, University of Leipzig, Germany. Her group studies function and signaling mechanisms of adhesion GPCR in C. elegans and mouse models. Her interest in adhesion GPCR developed during her PhD in Dr. A. Russ’ laboratory at University of Oxford.

From the journal Biological Chemistry

Abstract

Adhesion G protein-coupled receptors (aGPCR) form the second largest class of GPCR. They are phylogenetically old and have been highly conserved during evolution. Mutations in representatives of this class are associated with severe diseases such as Usher Syndrome, a combined congenital deaf-blindness, or bifrontal parietal polymicrogyria. The main characteristics of aGPCR are their enormous size and the complexity of their N termini. They contain a highly conserved GPCR proteolytic site (GPS) and several functional domains that have been implicated in cell-cell and cell-matrix interactions. Adhesion GPCR have been proposed to serve a dual function as adhesion molecules and as classical receptors. However, until recently there was no proof that aGPCR indeed couple to G proteins or even function as classical receptors. In this review, we have summarized and discussed recent evidence that aGPCR present many functional features of classical GPCR, including multiple G protein-coupling abilities, G protein-independent signaling and oligomerization, but also specific signaling properties only found in aGPCR.


Corresponding author: Torsten Schöneberg, Molecular Biochemistry, Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany

About the authors

Ines Liebscher

Ines Liebscher studied medicine at the University of Leipzig. After completing her MD thesis at the Institute for Biochemistry at the Medical Faculty on the physiological relevance of an orphan GPCR she pursued a scientific career. The current focus of her research is the field of adhesion GPCR, which she studies in vitro and in vivo using transgenic mouse models. Ines Liebscher is currently leading a group in the Institute of Biochemistry at University of Leipzig.

Torsten Schöneberg

Torsten Schöneberg studied medicine at the University of Greifswald, is professor of Molecular Biochemistry and leads the Institute for Biochemistry at the Medical Faculty of University of Leipzig, Germany. After completing his MD thesis at the Institute of Pharmacology at the Charité, Humboldt University of Berlin, he focused on GPCR and their signal transduction in the laboratories of J. Wess (NIDDK, NIH, Bethesda) and G. Schultz (Free University of Berlin) as a postdoc.

Simone Prömel

Simone Prömel studied biochemistry at the Free University of Berlin and is a junior group leader at the Institute for Biochemistry, Medical Faculty, University of Leipzig, Germany. Her group studies function and signaling mechanisms of adhesion GPCR in C. elegans and mouse models. Her interest in adhesion GPCR developed during her PhD in Dr. A. Russ’ laboratory at University of Oxford.

References

Abe, J., Fukuzawa, T., and Hirose, S. (2002). Cleavage of Ig-Hepta at a ’SEA’ module and at a conserved G protein-coupled receptor proteolytic site. J. Biol. Chem. 277, 23391–23398.10.1074/jbc.M110877200Search in Google Scholar PubMed

Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., and McVean, G.A. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65.10.1038/nature11632Search in Google Scholar PubMed PubMed Central

Anderson, K.D., Pan, L., Yang, X.M., Hughes, V.C., Walls, J.R., Dominguez, M.G., Simmons, M.V., Burfeind, P., Xue, Y., Wei, Y., et al. (2011). Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 108, 2807–2812.10.1073/pnas.1019761108Search in Google Scholar PubMed PubMed Central

Arac, D., Boucard, A.A., Bolliger, M.F., Nguyen, J., Soltis, S.M., Sudhof, T.C., and Brunger, A.T. (2012). A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378.10.1038/emboj.2012.26Search in Google Scholar PubMed PubMed Central

Beall, S.A., Boekelheide, K., and Johnson, K.J. (2005). Hybrid GPCR/cadherin (Celsr) proteins in rat testis are expressed with cell type specificity and exhibit differential Sertoli cell-germ cell adhesion activity. J. Androl. 26, 529–538.10.2164/jandrol.05003Search in Google Scholar PubMed

Bjarnadottir, T.K., Fredriksson, R., Hoglund, P.J., Gloriam, D.E., Lagerstrom, M.C., and Schioth, H.B. (2004). The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84, 23–33.10.1016/j.ygeno.2003.12.004Search in Google Scholar PubMed

Bjarnadottir, T.K., Geirardsdottir, K., Ingemansson, M., Mirza, M.A., Fredriksson, R., and Schioth, H.B. (2007). Identification of novel splice variants of adhesion G protein-coupled receptors. Gene 387, 38–48.10.1016/j.gene.2006.07.039Search in Google Scholar PubMed

Bohnekamp, J. and Schoneberg, T. (2011). Cell adhesion receptor GPR133 couples to Gs protein. J. Biol. Chem. 286, 41912–41916.10.1074/jbc.C111.265934Search in Google Scholar PubMed PubMed Central

Boselt, I., Rompler, H., Hermsdorf, T., Thor, D., Busch, W., Schulz, A., and Schoneberg, T. (2009). Involvement of the V2 vasopressin receptor in adaptation to limited water supply. PLoS One 4, e5573.10.1371/journal.pone.0005573Search in Google Scholar PubMed PubMed Central

Boucard, A.A., Ko, J., and Sudhof, T.C. (2012). High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J. Biol. Chem. 287, 9399–9413.10.1074/jbc.M111.318659Search in Google Scholar PubMed PubMed Central

Chang, G.W., Stacey, M., Kwakkenbos, M.J., Hamann, J., Gordon, S., and Lin, H.H. (2003). Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett. 547, 145–150.10.1016/S0014-5793(03)00695-1Search in Google Scholar

Chang, G.W., Davies, J.Q., Stacey, M., Yona, S., Bowdish, D.M., Hamann, J., Chen, T.C., Lin, C.Y., Gordon, S., and Lin, H.H. (2007). CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells. Biochem. Biophys. Res. Commun. 353, 133–138.10.1016/j.bbrc.2006.11.148Search in Google Scholar

Chazenbalk, G.D., Tanaka, K., Nagayama, Y., Kakinuma, A., Jaume, J.C., McLachlan, S.M., and Rapoport, B. (1997). Evidence that the thyrotropin receptor ectodomain contains not one, but two, cleavage sites. Endocrinology 138, 2893–2899.10.1210/endo.138.7.5259Search in Google Scholar

Chun, L., Zhang, W.H., and Liu, J.F. (2012). Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin. 33, 312–323.10.1038/aps.2011.186Search in Google Scholar

Das, S., Owen, K.A., Ly, K.T., Park, D., Black, S.G., Wilson, J.M., Sifri, C.D., Ravichandran, K.S., Ernst, P.B., and Casanova, J.E. (2011). Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 108, 2136–2141.10.1073/pnas.1014775108Search in Google Scholar

Eggerickx, D., Denef, J.F., Labbe, O., Hayashi, Y., Refetoff, S., Vassart, G., Parmentier, M., and Libert, F. (1995). Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J. 309, 837–843.10.1042/bj3090837Search in Google Scholar

El Moustaine, D., Granier, S., Doumazane, E., Scholler, P., Rahmeh, R., Bron, P., Mouillac, B., Baneres, J.L., Rondard, P., and Pin, J.P. (2012). Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc. Natl. Acad. Sci. USA 109, 16342–16347.10.1073/pnas.1205838109Search in Google Scholar

Fan, Q.R. and Hendrickson, W.A. (2005). Structure of human follicle-stimulating hormone in complex with its receptor. Nature 433, 269–277.10.1038/nature03206Search in Google Scholar

Formstone, C.J. and Little, P.F. (2001). The flamingo-related mouse Celsr family (Celsr1-3) genes exhibit distinct patterns of expression during embryonic development. Mech. Dev. 109, 91–94.10.1016/S0925-4773(01)00515-9Search in Google Scholar

Fredriksson, R., Gloriam, D.E., Hoglund, P.J., Lagerstrom, M.C., and Schioth, H.B. (2003). There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem. Biophys. Res. Commun. 301, 725–734.10.1016/S0006-291X(03)00026-3Search in Google Scholar

Fukuzawa, T. and Hirose, S. (2006). Multiple processing of Ig-Hepta/GPR116, a G protein-coupled receptor with immunoglobulin (Ig)-like repeats, and generation of EGF2-like fragment. J. Biochem. (Tokyo) 140, 445–452.10.1093/jb/mvj170Search in Google Scholar

Galle, J., Sittig, D., Hanisch, I., Wobus, M., Wandel, E., Loeffler, M., and Aust, G. (2006). Individual cell-based models of tumor-environment interactions: multiple effects of CD97 on tumor invasion. Am. J. Pathol. 169, 1802–1811.10.2353/ajpath.2006.060006Search in Google Scholar

Geng, Y., Xiong, D., Mosyak, L., Malito, D.L., Kniazeff, J., Chen, Y., Burmakina, S., Quick, M., Bush, M., Javitch, J.A., et al. (2012). Structure and functional interaction of the extracellular domain of human GABAB receptor GBR2. Nat. Neurosci. 15, 970–978.10.1038/nn.3133Search in Google Scholar

Gookin, T.E., Kim, J., and Assmann, S.M. (2008). Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in vivo protein coupling. Genome Biol. 9, R120.10.1186/gb-2008-9-7-r120Search in Google Scholar

Gray, J.X., Haino, M., Roth, M.J., Maguire, J.E., Jensen, P.N., Yarme, A., Stetler-Stevenson, M.A., Siebenlist, U., and Kelly, K. (1996). CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J. Immunol. 157, 5438–5447.10.4049/jimmunol.157.12.5438Search in Google Scholar

Gudermann, T., Schoneberg, T., and Schultz, G. (1997). Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu. Rev. Neurosci. 20, 399–427.10.1146/annurev.neuro.20.1.399Search in Google Scholar

Gupte, J., Swaminath, G., Danao, J., Tian, H., Li, Y., and Wu, X. (2012). Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett. 586, 1214–1219.10.1016/j.febslet.2012.03.014Search in Google Scholar

Hadjantonakis, A.K., Formstone, C.J., and Little, P.F. (1998). mCelsr1 is an evolutionarily conserved seven-pass transmembrane receptor and is expressed during mouse embryonic development. Mech. Dev. 78, 91–95.10.1016/S0925-4773(98)00153-1Search in Google Scholar

Hamann, J., Vogel, B., van Schijndel, G.M., and van Lier, R.A. (1996). The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J. Exp. Med. 184, 1185–1189.10.1084/jem.184.3.1185Search in Google Scholar PubMed PubMed Central

Hamann, J., Kwakkenbos, M.J., de Jong, E.C., Heus, H., Olsen, A.S., and van Lier, R.A. (2003). Inactivation of the EGF-TM7 receptor EMR4 after the Pan-Homo divergence. Eur. J. Immunol. 33, 1365–1371.10.1002/eji.200323881Search in Google Scholar PubMed

Hamidi, S., Chen, C.R., Mizutori-Sasai, Y., McLachlan, S.M., and Rapoport, B. (2011). Relationship between thyrotropin receptor hinge region proteolytic posttranslational modification and receptor physiological function. Mol. Endocrinol. 25, 184–194.10.1210/me.2010-0401Search in Google Scholar PubMed PubMed Central

Huang, Y., Fan, J., Yang, J., and Zhu, G.Z. (2008). Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol. Cell Biochem. 308, 133–139.10.1007/s11010-007-9621-4Search in Google Scholar PubMed

Huang, Y.S., Chiang, N.Y., Hu, C.H., Hsiao, C.C., Cheng, K.F., Tsai, W.P., Yona, S., Stacey, M., Gordon, S., Chang, G.W., et al. (2012). Activation of myeloid-specific adhesion-GPCR EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol. Cell Biol. 32, 1408–1420.10.1128/MCB.06557-11Search in Google Scholar PubMed PubMed Central

Hulpiau, P. and van Roy, F. (2011). New insights into the evolution of metazoan cadherins. Mol. Biol. Evol. 28, 647–657.10.1093/molbev/msq233Search in Google Scholar PubMed

Iguchi, T., Sakata, K., Yoshizaki, K., Tago, K., Mizuno, N., and Itoh, H. (2008). Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a Gα 12/13 and Rho pathway. J. Biol. Chem. 283, 14469–14478.10.1074/jbc.M708919200Search in Google Scholar PubMed

Jaffre, F., Friedman, A.E., Hu, Z., Mackman, N., and Blaxall, B.C. (2012). beta-Adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation 125, 2993–3003.10.1161/CIRCULATIONAHA.111.066787Search in Google Scholar PubMed PubMed Central

Ji, I., Lee, C., Song, Y., Conn, P.M., and Ji, T.H. (2002). Cis- and trans-activation of hormone receptors: the LH receptor. Mol. Endocrinol. 16, 1299–1308.10.1210/mend.16.6.0852Search in Google Scholar PubMed

Jin, Z., Tietjen, I., Bu, L., Liu-Yesucevitz, L., Gaur, S.K., Walsh, C.A., and Piao, X. (2007). Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum. Mol. Genet. 16, 1972–1985.10.1093/hmg/ddm144Search in Google Scholar PubMed

Kaczur, V., Puskas, L.G., Nagy, Z.U., Miled, N., Rebai, A., Juhasz, F., Kupihar, Z., Zvara, A., Hackler, L. Jr., and Farid, N.R. (2007). Cleavage of the human thyrotropin receptor by ADAM10 is regulated by thyrotropin. J. Mol. Recognit. 20, 392–404.10.1002/jmr.851Search in Google Scholar PubMed

Kaur, B., Brat, D.J., Devi, N.S., and Van Meir, E.G. (2005). Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24, 3632–3642.10.1038/sj.onc.1208317Search in Google Scholar PubMed

Kaur, B., Cork, S.M., Sandberg, E.M., Devi, N.S., Zhang, Z., Klenotic, P.A., Febbraio, M., Shim, H., Mao, H., Tucker-Burden, C., et al. (2009). Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res. 69, 1212–1220.10.1158/0008-5472.CAN-08-1166Search in Google Scholar PubMed PubMed Central

Kim, J.J., Park, Y.M., Baik, K.H., Choi, H.Y., Yang, G.S., Koh, I., Hwang, J.A., Lee, J., Lee, Y.S., Rhee, H., et al. (2012a). Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum. Genet. 131, 471–478.10.1007/s00439-011-1096-4Search in Google Scholar PubMed

Kim, Y.K., Moon, S., Hwang, M.Y., Kim, D.J., Oh, J.H., Kim, Y.J., Han, B.G., Lee, J.Y., and Kim, B.J. (2012b). Gene-based copy number variation study reveals a microdeletion at 12q24 that influences height in the Korean population. Genomics doi: 10.1016/j.ygeno.2012.11.002. [Epub ahead of print].10.1016/j.ygeno.2012.11.002Search in Google Scholar PubMed

King, N., Hittinger, C.T., and Carroll, S.B. (2003). Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301, 361–363.10.1126/science.1083853Search in Google Scholar PubMed

King, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788.10.1038/nature06617Search in Google Scholar PubMed PubMed Central

Kleinau, G., Mueller, S., Jaeschke, H., Grzesik, P., Neumann, S., Diehl, A., Paschke, R., and Krause, G. (2011). Defining structural and functional dimensions of the extracellular thyrotropin receptor region. J. Biol. Chem. 286, 22622–22631.10.1074/jbc.M110.211193Search in Google Scholar PubMed PubMed Central

Kojro, E. and Fahrenholz, F. (1995). Ligand-induced cleavage of the V2 vasopressin receptor by a plasma membrane metalloproteinase. J. Biol. Chem. 270, 6476–6481.10.1074/jbc.270.12.6476Search in Google Scholar PubMed

Kojro, E., Postina, R., Gilbert, S., Bender, F., Krause, G., and Fahrenholz, F. (1999). Structural requirements for V2 vasopressin receptor proteolytic cleavage. Eur. J. Biochem. 266, 538–548.10.1046/j.1432-1327.1999.00892.xSearch in Google Scholar PubMed

Kolakowski, L.F. Jr. (1994). GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1–7.Search in Google Scholar

Kraja, A.T., Borecki, I.B., Tsai, M.Y., Ordovas, J.M., Hopkins, P.N., Lai, C.Q., Frazier-Wood, A.C., Straka, R.J., Hixson, J.E., Province, M.A., et al. (2013). Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN Study. Lipids 48, 155–165.10.1007/s11745-012-3740-8Search in Google Scholar PubMed PubMed Central

Krasnoperov, V., Lu, Y., Buryanovsky, L., Neubert, T.A., Ichtchenko, K., and Petrenko, A.G. (2002). Post-translational proteolytic processing of the calcium-independent receptor of α-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J. Biol. Chem. 277, 46518–46526.10.1074/jbc.M206415200Search in Google Scholar PubMed

Krishnan, A., Almen, M.S., Fredriksson, R., and Schioth, H.B. (2012). The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One. 7, e29817.10.1371/journal.pone.0029817Search in Google Scholar PubMed PubMed Central

Kulkarni, R.D., Thon, M.R., Pan, H., and Dean, R.A. (2005). Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6, R24.10.1186/gb-2005-6-3-r24Search in Google Scholar

Kwakkenbos, M.J., Kop, E.N., Stacey, M., Matmati, M., Gordon, S., Lin, H.H., and Hamann, J. (2004). The EGF-TM7 family: a postgenomic view. Immunogenetics 55, 655–666.10.1007/s00251-003-0625-2Search in Google Scholar

Kwakkenbos, M.J., Pouwels, W., Matmati, M., Stacey, M., Lin, H.H., Gordon, S., van Lier, R.A., and Hamann, J. (2005). Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J. Leukoc. Biol. 77, 112–119.10.1189/jlb.0704402Search in Google Scholar

Langenhan, T., Promel, S., Mestek, L., Esmaeili, B., Waller-Evans, H., Hennig, C., Kohara, Y., Avery, L., Vakonakis, I., Schnabel, R., et al. (2009). Latrophilin signaling links anterior-posterior tissue polarity and oriented cell divisions in the C. elegans embryo. Dev Cell. 17, 494–504.10.1016/j.devcel.2009.08.008Search in Google Scholar

Lawrence, P.A., Struhl, G., and Casal, J. (2007). Planar cell polarity: one or two pathways? Nat. Rev. Genet. 8, 555–563.10.1038/nrg2125Search in Google Scholar

Leemans, J.C., te Velde, A.A., Florquin, S., Bennink, R.J., de Bruin, K., van Lier, R.A., van der Poll, T., and Hamann, J. (2004). The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J. Immunol. 172, 1125–1131.10.4049/jimmunol.172.2.1125Search in Google Scholar

Lefkowitz, R.J., Cotecchia, S., Samama, P., and Costa, T. (1993). Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303–307.10.1016/0165-6147(93)90048-OSearch in Google Scholar

Lelianova, V.G., Davletov, B.A., Sterling, A., Rahman, M.A., Grishin, E.V., Totty, N.F., and Ushkaryov, Y.A. (1997). Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J. Biol. Chem. 272, 21504–21508.10.1074/jbc.272.34.21504Search in Google Scholar PubMed

Li, S., Jin, Z., Koirala, S., Bu, L., Xu, L., Hynes, R.O., Walsh, C.A., Corfas, G., and Piao, X. (2008). GPR56 regulates pial basement membrane integrity and cortical lamination. J. Neurosci. 28, 5817–5826.10.1523/JNEUROSCI.0853-08.2008Search in Google Scholar PubMed PubMed Central

Lin, H.H., Chang, G.W., Davies, J.Q., Stacey, M., Harris, J., and Gordon, S. (2004). Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. Chem. 279, 31823–31832.10.1074/jbc.M402974200Search in Google Scholar PubMed

Little, K.D., Hemler, M.E., and Stipp, C.S. (2004). Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Gα q/11 association. Mol. Biol. Cell. 15, 2375–2387.10.1091/mbc.e03-12-0886Search in Google Scholar

Lu, B., Usui, T., Uemura, T., Jan, L., and Jan, Y.N. (1999). Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247–1250.10.1016/S0960-9822(99)80505-3Search in Google Scholar

Luo, R., Jeong, S.J., Jin, Z., Strokes, N., Li, S., and Piao, X. (2011). G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc. Natl. Acad. Sci. USA 108, 12925–12930.10.1073/pnas.1104821108Search in Google Scholar PubMed PubMed Central

Luo, R., Jin, Z., Deng, Y., Strokes, N., and Piao, X. (2012). Disease-associated mutations prevent GPR56-collagen III interaction. PLoS One 7, e29818.10.1371/journal.pone.0029818Search in Google Scholar PubMed PubMed Central

Magalhaes, A.C., Dunn, H., and Ferguson, S.S. (2012). Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol. 165, 1717–1736.10.1111/j.1476-5381.2011.01552.xSearch in Google Scholar PubMed PubMed Central

Marroni, F., Pfeufer, A., Aulchenko, Y.S., Franklin, C.S., Isaacs, A., Pichler, I., Wild, S.H., Oostra, B.A., Wright, A.F., Campbell, H., et al. (2009). A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ. Cardiovasc. Genet. 2, 322–328.10.1161/CIRCGENETICS.108.833806Search in Google Scholar PubMed PubMed Central

McMillan, D.R., Kayes-Wandover, K.M., Richardson, J.A., and White, P.C. (2002). Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J. Biol. Chem. 277, 785–792.10.1074/jbc.M108929200Search in Google Scholar PubMed

Moers, A., Nurnberg, A., Goebbels, S., Wettschureck, N., and Offermanns, S. (2008). Galpha12/Galpha13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices. Mol. Cell. Biol. 28, 1480–1488.10.1128/MCB.00651-07Search in Google Scholar PubMed PubMed Central

Monk, K.R., Naylor, S.G., Glenn, T.D., Mercurio, S., Perlin, J.R., Dominguez, C., Moens, C.B., and Talbot, W.S. (2009). A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325, 1402–1405.10.1126/science.1173474Search in Google Scholar PubMed PubMed Central

Moriguchi, T., Haraguchi, K., Ueda, N., Okada, M., Furuya, T., and Akiyama, T. (2004). DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells 9, 549–560.10.1111/j.1356-9597.2004.00743.xSearch in Google Scholar PubMed

Neumann, S., Huang, W., Titus, S., Krause, G., Kleinau, G., Alberobello, A.T., Zheng, W., Southall, N.T., Inglese, J., Austin, C.P., et al. (2009). Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc. Natl. Acad. Sci. USA 106, 12471–12476.10.1073/pnas.0904506106Search in Google Scholar PubMed PubMed Central

Nishimura, T., Honda, H., and Takeichi, M. (2012). Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097.10.1016/j.cell.2012.04.021Search in Google Scholar PubMed

Nordstrom, K.J., Lagerstrom, M.C., Waller, L.M., Fredriksson, R., and Schioth, H.B. (2009). The secretin GPCRs descended from the family of adhesion GPCRs. Mol. Biol. Evol. 26, 71–84.10.1093/molbev/msn228Search in Google Scholar PubMed

Nordstrom, K.J., Sallman Almen, M., Edstam, M.M., Fredriksson, R., and Schioth, H.B. (2011). Independent HHsearch, Needleman-Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol. Biol. Evol. 28, 2471–2480.10.1093/molbev/msr061Search in Google Scholar PubMed

Nurwakagari, P., Breit, A., Hess, C., Salman-Livny, H., Ben-Menahem, D., and Gudermann, T. (2007). A conformational contribution of the luteinizing hormone-receptor ectodomain to receptor activation. J. Mol. Endocrinol. 38, 259–275.10.1677/jme.1.02160Search in Google Scholar PubMed

Okajima, D., Kudo, G., and Yokota, H. (2010). Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J. Recept. Signal. Transduct. Res. 30, 143–153.10.3109/10799891003671139Search in Google Scholar PubMed

O’Sullivan, M.L., de Wit, J., Savas, J.N., Comoletti, D., Otto-Hitt, S., Yates, J.R. 3rd, and Ghosh, A. (2012). FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron. 73, 903–910.10.1016/j.neuron.2012.01.018Search in Google Scholar PubMed PubMed Central

Paavola, K.J., Stephenson, J.R., Ritter, S.L., Alter, S.P., and Hall, R.A. (2011). The N-terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J. Biol. Chem. 286, 28914–28921.10.1074/jbc.M111.247973Search in Google Scholar PubMed PubMed Central

Park, D., Tosello-Trampont, A.C., Elliott, M.R., Lu, M., Haney, L.B., Ma, Z., Klibanov, A.L., Mandell, J.W., and Ravichandran, K.S. (2007). BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434.10.1038/nature06329Search in Google Scholar PubMed

Piao, X., Hill, R.S., Bodell, A., Chang, B.S., Basel-Vanagaite, L., Straussberg, R., Dobyns, W.B., Qasrawi, B., Winter, R.M., Innes, A.M., et al. (2004). G protein-coupled receptor-dependent development of human frontal cortex. Science 303, 2033–2036.10.1126/science.1092780Search in Google Scholar PubMed

Preuss, H., Ghorai, P., Kraus, A., Dove, S., Buschauer, A., and Seifert, R. (2007). Constitutive activity and ligand selectivity of human, guinea pig, rat, and canine histamine H2 receptors. J. Pharmacol. Exp. Ther. 321, 983–995.10.1124/jpet.107.120014Search in Google Scholar PubMed

Promel, S., Frickenhaus, M., Hughes, S., Mestek, L., Staunton, D., Woollard, A., Vakonakis, I., Schoneberg, T., Schnabel, R., Russ, A.P., et al. (2012a). The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep. 2, 321–331.10.1016/j.celrep.2012.06.015Search in Google Scholar PubMed PubMed Central

Promel, S., Waller-Evans, H., Dixon, J., Zahn, D., Colledge, W.H., Doran, J., Carlton, M.B., Grosse, J., Schoneberg, T., Russ, A.P., et al. (2012b). Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Dev. Dyn. 241, 1591–1602.10.1002/dvdy.23841Search in Google Scholar PubMed

Qian, F., Boletta, A., Bhunia, A.K., Xu, H., Liu, L., Ahrabi, A.K., Watnick, T.J., Zhou, F., and Germino, G.G. (2002). Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl. Acad. Sci. USA 99, 16981–16986.10.1073/pnas.252484899Search in Google Scholar PubMed PubMed Central

Rompler, H., Schulz, A., Pitra, C., Coop, G., Przeworski, M., Paabo, S., and Schoneberg, T. (2005). The rise and fall of the chemoattractant receptor GPR33. J. Biol. Chem. 280, 31068–31075.10.1074/jbc.M503586200Search in Google Scholar PubMed

Rondard, P., Huang, S., Monnier, C., Tu, H., Blanchard, B., Oueslati, N., Malhaire, F., Li, Y., Trinquet, E., Labesse, G., et al. (2008). Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning. EMBO J. 27, 1321–1332.10.1038/emboj.2008.64Search in Google Scholar PubMed PubMed Central

Sangkuhl, K., Schulz, A., Schultz, G., and Schoneberg, T. (2002). Structural requirements for mutational lutropin/choriogonadotropin receptor activation. J. Biol. Chem. 277, 47748–47755.10.1074/jbc.M203491200Search in Google Scholar PubMed

Schioth, H.B. and Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen. Comp. Endocrinol. 142, 94–101.10.1016/j.ygcen.2004.12.018Search in Google Scholar PubMed

Schioth, H.B., Nordstrom, K.J., and Fredriksson, R. (2010). The adhesion GPCRs; gene repertoire, phylogeny and evolution. Adv. Exp. Med. Biol. 706, 1–13.10.1007/978-1-4419-7913-1_1Search in Google Scholar PubMed

Schulz, A. and Schoneberg, T. (2003). The structural evolution of a P2Y-like G-protein-coupled receptor. J. Biol. Chem. 278, 35531–35541.10.1074/jbc.M303346200Search in Google Scholar PubMed

Shashidhar, S., Lorente, G., Nagavarapu, U., Nelson, A., Kuo, J., Cummins, J., Nikolich, K., Urfer, R., and Foehr, E.D. (2005). GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24, 1673–1682.10.1038/sj.onc.1208395Search in Google Scholar

Silva, J.P., Lelianova, V., Hopkins, C., Volynski, K.E., and Ushkaryov, Y. (2009). Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J. Biol. Chem. 284, 6495–6506.10.1074/jbc.M806979200Search in Google Scholar

Stacey, M., Lin, H.H., Gordon, S., and McKnight, A.J. (2000). LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem. Sci. 25, 284–289.10.1016/S0968-0004(00)01583-8Search in Google Scholar

Stacey, M., Chang, G.W., Sanos, S.L., Chittenden, L.R., Stubbs, L., Gordon, S., and Lin, H.H. (2002). EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J. Biol. Chem. 277, 29283–29293.10.1074/jbc.M204306200Search in Google Scholar

Stacey, M., Chang, G.W., Davies, J.Q., Kwakkenbos, M.J., Sanderson, R.D., Hamann, J., Gordon, S., and Lin, H.H. (2003). The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102, 2916–2924.10.1182/blood-2002-11-3540Search in Google Scholar

Strotmann, R., Schrock, K., Boselt, I., Staubert, C., Russ, A., and Schoneberg, T. (2011). Evolution of GPCR: change and continuity. Mol. Cell Endocrinol. 331, 170–178.10.1016/j.mce.2010.07.012Search in Google Scholar

Strutt, H. and Strutt, D. (2008). Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr. Biol. 18, 1555–1564.10.1016/j.cub.2008.08.063Search in Google Scholar

Sudhof, T.C. (2001). alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu. Rev. Neurosci. 24, 933–962.10.1146/annurev.neuro.24.1.933Search in Google Scholar

Tonjes, A., Koriath, M., Schleinitz, D., Dietrich, K., Bottcher, Y., Rayner, N.W., Almgren, P., Enigk, B., Richter, O., Rohm, S., et al. (2009). Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs. Hum. Mol. Genet. 18, 4662–4668.10.1093/hmg/ddp423Search in Google Scholar

Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R.W., Schwarz, T.L., Takeichi, M., and Uemura, T. (1999). Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell. 98, 585–595.10.1016/S0092-8674(00)80046-XSearch in Google Scholar

Vallon, M. and Essler, M. (2006). Proteolytically processed soluble tumor endothelial marker (TEM) 5 mediates endothelial cell survival during angiogenesis by linking integrin alpha(v)beta3 to glycosaminoglycans. J. Biol. Chem. 281, 34179–34188.10.1074/jbc.M605291200Search in Google Scholar

Vlaeminck-Guillem, V., Ho, S.C., Rodien, P., Vassart, G., and Costagliola, S. (2002). Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol. Endocrinol. 16, 736–746.10.1210/mend.16.4.0816Search in Google Scholar

Volynski, K.E., Silva, J.P., Lelianova, V.G., Atiqur Rahman, M., Hopkins, C., and Ushkaryov, Y.A. (2004). Latrophilin fragments behave as independent proteins that associate and signal on binding of LTX(N4C). EMBO J. 23, 4423–4433.10.1038/sj.emboj.7600443Search in Google Scholar

Vu, T.K., Hung, D.T., Wheaton, V.I., and Coughlin, S.R. (1991a). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068.10.1016/0092-8674(91)90261-VSearch in Google Scholar

Vu, T.K., Wheaton, V.I., Hung, D.T., Charo, I., and Coughlin, S.R. (1991b). Domains specifying thrombin-receptor interaction. Nature 353, 674–677.10.1038/353674a0Search in Google Scholar PubMed

Wang, T., Ward, Y., Tian, L., Lake, R., Guedez, L., Stetler-Stevenson, W.G., and Kelly, K. (2005). CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105, 2836–2844.10.1182/blood-2004-07-2878Search in Google Scholar PubMed

Ward, Y., Lake, R., Yin, J.J., Heger, C.D., Raffeld, M., Goldsmith, P.K., Merino, M., and Kelly, K. (2011). LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 71, 7301–7311.10.1158/0008-5472.CAN-11-2381Search in Google Scholar PubMed PubMed Central

Wei, W., Hackmann, K., Xu, H., Germino, G., and Qian, F. (2007). Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J. Biol. Chem. 282, 21729–21737.10.1074/jbc.M703218200Search in Google Scholar PubMed

Weston, M.D., Luijendijk, M.W., Humphrey, K.D., Moller, C., and Kimberling, W.J. (2004). Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am. J. Hum. Genet. 74, 357–366.10.1086/381685Search in Google Scholar PubMed PubMed Central

Xu, L. and Hynes, R.O. (2007). GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle. 6, 160–165.10.4161/cc.6.2.3760Search in Google Scholar PubMed

Yona, S., Lin, H.H., Siu, W.O., Gordon, S., and Stacey, M. (2008). Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem. Sci. 33, 491–500.10.1016/j.tibs.2008.07.005Search in Google Scholar PubMed

Zhang, M., Tong, K.P., Fremont, V., Chen, J., Narayan, P., Puett, D., Weintraub, B.D., and Szkudlinski, M.W. (2000). The extracellular domain suppresses constitutive activity of the transmembrane domain of the human TSH receptor: implications for hormone-receptor interaction and antagonist design. Endocrinology 141, 3514–3517.10.1210/endo.141.9.7790Search in Google Scholar PubMed

Received: 2013-1-11
Accepted: 2013-3-19
Published Online: 2013-03-21
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0109/html
Scroll to top button