Role of serotonin in the immune system and in neuroimmune interactions

Brain Behav Immun. 1998 Dec;12(4):249-71. doi: 10.1006/brbi.1998.0532.

Abstract

Serotonin (5-HT) is one of the most extensively studied neurotransmitters of the central nervous system. 5-HT is, however, also present in a variety of peripheral tissues including in constituents of the immune system. The function of 5-HT in the immune system has received increasing attention since about 1984, but has been reviewed only once, in 1985. In recent years, modern techniques of molecular biology such as reverse-transcriptase polymerase chain reaction and targeted gene disruption have made it possible to study new important aspects of 5-HT in the immune system. In the first part of the review, we explore whether 5-HT is involved in interactions between the central nervous and immune systems. It emerges that 5-HT may mediate interactions of these two systems by four different pathways. In the second part, we dissect the functional roles of 5-HT in the immune system. We describe the distribution of 5-HT receptors and the 5-HT transporter on immune cells and estimate which levels 5-HT may attain in the extracellular space in physiological conditions and under pathological circumstances such as inflammation, thrombosis, and ischemia. At these 5-HT concentrations, four major functions for 5-HT emerge. These include T cell and natural killer cell activation, delayed-type hypersensitivity responses, production of chemotactic factors, and natural immunity delivered by macrophages. Finally, we discuss promising future avenues to further advance knowledge of the role of 5-HT in the immune system and in neuroimmune interactions.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Immune System / physiology*
  • Neuroimmunomodulation / physiology*
  • Serotonin / physiology*

Substances

  • Serotonin