Separate mechanisms for short- and long-term memory

Behav Brain Res. 1999 Aug;103(1):1-11. doi: 10.1016/s0166-4328(99)00036-4.

Abstract

It has been assumed for over a century that short-term memory (STM) processes are in charge of cognition while long-term memory (LTM) is being formed, a process that takes hours. A major question is whether STM is merely a step towards LTM, or a separate entity. Recent experiments have shown that many treatments with specific molecular actions given into the hippocampus, entorhinal or parietal cortex immediately after one-trial avoidance training can effectively block STM without affecting LTM formation. This shows that STM and LTM involve separate mechanisms. Some treatments even affect STM and LTM in opposite directions. Others, however, influence both memory types similarly, suggesting links between the two both at the receptor and at the post-receptor level. Drug effects on working memory (WM) were also studied. In some brain regions WM is affected by receptor blockers that alter either STM or LTM; in others it is not. This suggests links between the three memory types at the receptor level. The anterolateral prefrontal cortex is crucial for WM and LTM but is not involved in STM. The hippocampus, entorhinal and parietal cortex are crucial for the three types of memory, in some cases using different receptors for each. The amygdala is not involved in WM or STM, but it plays a key role in the modulation of the early phase of LTM.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Memory / drug effects
  • Memory / physiology*
  • Memory, Short-Term / drug effects
  • Memory, Short-Term / physiology*