Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants

J Acoust Soc Am. 1999 Dec;106(6):3629-36. doi: 10.1121/1.428215.

Abstract

Multi-channel cochlear implants typically present spectral information to the wrong "place" in the auditory nerve array, because electrodes can only be inserted partway into the cochlea. Although such spectral shifts are known to cause large immediate decrements in performance in simulations, the extent to which listeners can adapt to such shifts has yet to be investigated. Here, the effects of a four-channel implant in normal listeners have been simulated, and performance tested with unshifted spectral information and with the equivalent of a 6.5-mm basalward shift on the basilar membrane (1.3-2.9 octaves, depending on frequency). As expected, the unshifted simulation led to relatively high levels of mean performance (e.g., 64% of words in sentences correctly identified) whereas the shifted simulation led to very poor results (e.g., 1% of words). However, after just nine 20-min sessions of connected discourse tracking with the shifted simulation, performance improved significantly for the identification of intervocalic consonants, medial vowels in monosyllables, and words in sentences (30% of words). Also, listeners were able to track connected discourse of shifted signals without lipreading at rates up to 40 words per minute. Although we do not know if complete adaptation to the shifted signals is possible, it is clear that short-term experiments seriously exaggerate the long-term consequences of such spectral shifts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Cochlear Implants*
  • Female
  • Humans
  • Male
  • Speech Perception / physiology*