Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei

J Comp Neurol. 2000 Mar 13;418(3):299-309.

Abstract

The relationships between primary afferent terminals (PATs) and their associated presynaptic terminals in the rat trigeminal sensory nuclear complex (TSNC) were examined with special reference to amino acid transmitters glutamate (Glu) and gamma-aminobutyric acid (GABA). Primary afferent terminals anterogradely labeled from the trigeminal ganglion with the B subunit of cholera toxin conjugated to horseradish peroxidase (CTB-HRP) were sectioned for electron microscopy. Serial sections from the principal nucleus (Vp), dorsomedial parts of the oral and interpolar nuclei (Vdm), and lamina III/IV of caudal nucleus (Vc) were immunostained for Glu and GABA by using a postembedding immunogold technique. The tracer, CTB-HRP to the trigeminal ganglion, preferentially labeled myelinated primary afferents. Sections immunostained with Glu antiserum showed that most labeled PATs were enriched with immunoreactivity (IR) for Glu. The Glu-IR PATs contained clear, round, synaptic vesicles and formed asymmetric synaptic contacts with somata or dendrites. They were frequently postsynaptic to, unlabeled axon terminals filled with a mixture of clear, round, oval, and flattened vesicles (p-endings), with symmetric synaptic junctions. The frequency of synapses onto somata or primary dendrites per Glu-IR PAT was higher in the Vdm than in either the Vp or Vc lamina III/IV. The frequency of contacts of the p-endings per Glu-IR PAT was higher in the Vp than in the Vdm and Vc lamina III/IV. Sections immunostained with GABA antiserum showed that most axon terminals presynaptic to PATs were enriched with GABA in the three nuclei. The GABA-IR axon terminals and their postsynaptic PATs had a similar ultrastructural character to p-endings and their postsynaptic Glu-IR PATs, respectively. The present study suggests that primary afferent neurons with large-caliber fibers use glutamate as a neurotransmitter and are subject to presynaptic modulation by GABAergic fibers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axons / physiology
  • Axons / ultrastructure
  • Glutamic Acid / metabolism*
  • Microscopy, Electron
  • Nerve Endings / physiology
  • Nerve Endings / ultrastructure
  • Neurons, Afferent / physiology*
  • Presynaptic Terminals / metabolism
  • Rats / anatomy & histology
  • Rats / physiology*
  • Sensation / physiology
  • Signal Transduction / physiology*
  • Trigeminal Nuclei / cytology
  • Trigeminal Nuclei / physiology*
  • Trigeminal Nuclei / ultrastructure
  • gamma-Aminobutyric Acid / metabolism*

Substances

  • Glutamic Acid
  • gamma-Aminobutyric Acid