Compensatory strategies for reaching in stroke

Brain. 2000 May:123 ( Pt 5):940-53. doi: 10.1093/brain/123.5.940.

Abstract

A major prerequisite for successful rehabilitation therapy after stroke is the understanding of the mechanisms underlying motor deficits common to these patients. Studies have shown that in stroke patients multijoint pointing movements are characterized by decreased movement speed and increased movement variability, by increased movement segmentation and by spatial and temporal incoordination between adjacent arm joints with respect to healthy subjects. We studied how the damaged nervous system recovers or compensates for deficits in reaching, and correlated reaching deficits with the level of functional impairment. Nine right-hemiparetic subjects and nine healthy subjects participated. All subjects were right-hand dominant. Data from the affected arm of hemiparetic subjects were compared with those from the arm in healthy subjects. Seated subjects made 40 pointing movements with the right arm in a single session. Movements were made from an initial target, for which the arm was positioned alongside the trunk. Then the subject lifted the arm and pointed to the final target, located in front of the subject in the contralateral workspace. Kinematic data from the arm and trunk were recorded with a three-dimensional analysis system. Arm movements in stroke subjects were longer, more segmented, more variable and had larger movement errors. Elbow-shoulder coordination was disrupted and the range of active joint motion was decreased significantly compared with healthy subjects. Some aspects of motor performance (duration, segmentation, accuracy and coordination) were significantly correlated with the level of motor impairment. Despite the fact that stroke subjects encountered all these deficits, even subjects with the most severe motor impairment were able to transport the end-point to the target. All but one subject involved the trunk to accomplish this motor task. In others words, they recruited new degrees of freedom typically not used by healthy subjects. The use of compensatory strategies may be related to the degree of motor impairment: severely to moderately impaired subjects recruited new degrees of freedom to compensate for motor deficits while mildly impaired subjects tended to employ healthy movement patterns. We discuss the possibility that there is a critical level of recovery at which patients switch from a strategy employing new degrees of freedom to one in which motor recovery is produced by improving the management of degrees of freedom characteristic of healthy performance. Our data also suggest that stroke subjects may be able to exploit effectively the redundancy of the motor system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Biomechanical Phenomena
  • Dominance, Cerebral
  • Female
  • Humans
  • Joints / physiopathology
  • Male
  • Middle Aged
  • Motor Activity / physiology*
  • Movement / physiology*
  • Paresis / physiopathology*
  • Posture
  • Psychomotor Performance*
  • Reference Values
  • Stroke / physiopathology*
  • Time Factors