The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain

Brain Res Mol Brain Res. 2000 Apr 14;77(1):19-28. doi: 10.1016/s0169-328x(00)00036-x.

Abstract

In an attempt to elucidate the molecular mechanisms underlying neuro-network formation in the developing brain, we analyzed 130 proteolytic cleavage peptides of membrane proteins purified from newborn mouse brains. We describe here the characterization of a membrane protein with an apparent molecular mass of 46 kDa, a member of the immunoglobulin superfamily of which the cDNA sequence was recently reported, encoding the mouse homologue of the human coxsackievirus and adenovirus receptor (mCAR). Western and Northern blot analyses demonstrated the abundant expression of mCAR in the mouse brain, the highest level being observed in the newborn mouse brain, and its expression was detected in embryos as early as at 10. 5 days post-coitus (dpc), but decreased rapidly after birth. On in situ hybridization, mCAR mRNA expression was observed throughout the newborn mouse brain. In primary neurons from the hippocampi of mouse embryos the expression of mCAR was observed throughout the cells including those in growth cones on immunohistochemistry. In order to determine whether or not mCAR is involved in cell adhesion, aggregation assays were carried out. C6 cells transfected with mCAR cDNA aggregated homophilically, which was inhibited by specific antibodies against the extracellular domain of mCAR. In addition to its action as a virus receptor, mCAR may function naturally as an adhesion molecule involved in neuro-network formation in the developing nervous system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Animals, Newborn
  • Astrocytes / physiology
  • Brain / embryology
  • Brain / growth & development
  • Brain / physiology*
  • Cell Adhesion
  • Cell Adhesion Molecules / physiology
  • Cell Membrane / physiology
  • Cells, Cultured
  • Coxsackie and Adenovirus Receptor-Like Membrane Protein
  • Embryo, Mammalian
  • Embryonic and Fetal Development
  • Gene Expression Regulation, Developmental*
  • Hippocampus / cytology
  • Hippocampus / physiology
  • Humans
  • Mice
  • Molecular Sequence Data
  • Neurons / cytology
  • Neurons / physiology*
  • Organ Specificity
  • Peptide Fragments / chemistry
  • RNA, Messenger / genetics
  • Receptors, Virus / analysis
  • Receptors, Virus / genetics
  • Receptors, Virus / physiology*
  • Transcription, Genetic
  • Transfection

Substances

  • CLMP protein, human
  • CLMP protein, mouse
  • Cell Adhesion Molecules
  • Coxsackie and Adenovirus Receptor-Like Membrane Protein
  • Peptide Fragments
  • RNA, Messenger
  • Receptors, Virus