A blocker-resistant, fast-decaying, intermediate-threshold calcium current in palaeocortical pyramidal neurons

Eur J Neurosci. 2000 Jul;12(7):2376-86. doi: 10.1046/j.1460-9568.2000.00125.x.

Abstract

The whole-cell patch-clamp technique was used to record Ca2+ currents in acutely dissociated neurons from layer II of guinea-pig piriform cortex (PC). Ba2+ (5 mM) was used as charge carrier. In a subpopulation of layer II cells ( approximately 22%) total Ba2+ currents (IBas) displayed a high degree (> 70%) of inactivation after 300 ms of steady depolarization. The application of L-, N- and P/Q-type Ca2+-channel blockers to these high-decay IBas left their fast inactivating component largely unaffected. The inactivation phase of the blocker-resistant, fast-decaying IBa thus isolated had a bi-exponential time course, with a fast time constant of approximately 20 ms and a slower time constant of approximately 100 ms at voltage levels positive to -10 mV. The voltage dependence of activation of the blocker-resistant, fast-decaying IBa was shifted by approximately 7-9 mV in the negative direction in comparison with those of other pharmacologically and/or kinetically different high-voltage-activated Ca2+ currents. We named this blocker-resistant, fast-decaying, intermediate-threshold current IRfi. The amplitude of IRfi decreased only slightly (by approximately 9%) when extracellular Ca2+ was substituted for Ba2+, in contrast with that of slowly decaying, high-voltage-activated currents, which was reduced by approximately 41% on average. Moreover, IRfi was substantially inhibited by low concentrations of Ni2+ (50 microM). We conclude that IRfi, because of its fast inactivation kinetics, intermediate threshold of activation and resistance to organic blockers, represents a definite, identifiable Ca2+ current different from classical high-voltage-activated currents and clearly distinguishable from classical IT. The striking similarity found between IRfi and Ca2+ currents resulting from heterologous expression of alpha1E-type channel subunits is discussed.

MeSH terms

  • Animals
  • Barium / pharmacokinetics
  • Calcium / pharmacokinetics*
  • Calcium Channel Blockers / pharmacology*
  • Calcium Channels, R-Type / physiology*
  • Cerebral Cortex / cytology*
  • Female
  • Guinea Pigs
  • Ion Channel Gating / drug effects
  • Ion Channel Gating / physiology
  • Kinetics
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Nickel / pharmacology
  • Nifedipine / pharmacology*
  • Patch-Clamp Techniques
  • Pyramidal Cells / chemistry
  • Pyramidal Cells / physiology*
  • omega-Conotoxin GVIA / pharmacology
  • omega-Conotoxins / pharmacology

Substances

  • Calcium Channel Blockers
  • Calcium Channels, R-Type
  • omega-Conotoxins
  • omega-conotoxin-MVIIC
  • Barium
  • Nickel
  • omega-Conotoxin GVIA
  • Nifedipine
  • Calcium