A combined functional in vivo measure for primary and secondary auditory cortices

Hear Res. 2000 Oct;148(1-2):153-60. doi: 10.1016/s0378-5955(00)00148-9.

Abstract

Auditory evoked magnetic fields are reliable physiological in vivo markers of activity generated in auditory cortices. In recent years, several components of auditory evoked fields have been demonstrated with specific topographies within the auditory cortex in man. Their differential elicitation and analyses has rendered the discrimination of neural activities in primary vs. secondary auditory cortical fields possible. This in vivo measure may be of interest in a number of (neuro)psychiatric and neuropsychological disorders with central auditory deficits, in which in vivo anatomical measures do not allow a clear distinction of primary vs. secondary auditory cortex involvement. To help better understand the pathophysiology of such disorders, we developed and introduce a combined measure of steady-state field (SSR) and the N1 component of the transient evoked field. The acoustic stimulus for this paradigm consists of a 500-ms tone burst with 39-Hz amplitude modulation of the carrier frequency. This combined stimulation allows assessment of both auditory cortex components in one brief examination to be well tolerated by patients. We examined the source locations of SSR and N1 component with separate classical stimulation and combined stimulation within-session in healthy volunteer subjects. We demonstrate here that the distinct sources of steady-state (primary auditory cortex) and N1 (secondary auditory cortex) responses can be reliably measured without significant spatial distortion with this combined stimulation paradigm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods
  • Adult
  • Auditory Cortex / physiology*
  • Evoked Potentials, Auditory / physiology*
  • Female
  • Homeostasis
  • Humans
  • Magnetoencephalography
  • Male
  • Reference Values