A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics

Eur J Neurosci. 2000 Nov;12(11):3843-53. doi: 10.1046/j.1460-9568.2000.00269.x.

Abstract

The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology*
  • Amino Acid Transport System X-AG*
  • Animals
  • Animals, Newborn
  • Astrocytes / cytology
  • Astrocytes / drug effects
  • Astrocytes / physiology*
  • Benzothiadiazines / pharmacology
  • Biological Transport / drug effects
  • Carrier Proteins / metabolism*
  • Cells, Cultured
  • Cerebral Cortex / cytology
  • Cerebral Cortex / physiology*
  • Glutamate Plasma Membrane Transport Proteins
  • Glutamic Acid / physiology*
  • Kainic Acid / pharmacology
  • Kinetics
  • Mice
  • Models, Theoretical
  • N-Methylaspartate / pharmacology
  • Sodium / metabolism*
  • Symporters*
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid / pharmacology

Substances

  • Amino Acid Transport System X-AG
  • Benzothiadiazines
  • Carrier Proteins
  • Glutamate Plasma Membrane Transport Proteins
  • Symporters
  • Glutamic Acid
  • N-Methylaspartate
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
  • Sodium
  • cyclothiazide
  • Kainic Acid