Sequence sensitivity of neurons in cat primary auditory cortex

Cereb Cortex. 2000 Dec;10(12):1155-67. doi: 10.1093/cercor/10.12.1155.

Abstract

Properties of sequence-sensitive neurons in primary auditory cortex of cats were explored in detail. Stimuli were sequences of two tones, in which the frequency and intensity of the first tone and the temporal separation between the first and second, or probe, tone were parametrically varied. After presentation of the first tone, the responses of 32 single units and 48 multiunits to the probe tone were found to be enhanced up to 140-5270% (median 340%) above the response obtained in the single-tone condition. Probe tone enhancement was induced from a considerable number of sequence conditions and depended on the frequency and intensity of the first tone and on the temporal separation between the onsets of the first and the probe tone. On average, the maximally enhanced response occurred when the first tone was 1 octave below or above the probe tone and its intensity was 14 dB louder than the probe tone. The most effective temporal separation of the tones for an enhancement effect was approximately 100 ms. The range of enhancing tones was largely outside the excitatory tuning curve of a neuron. Results extend previous findings of properties of sequence-sensitive neurons in the auditory cortex of echolocating bats and non-echolocating mammals, and suggest that sequence-sensitive neurons are quite common and involved in the cortical representation of spectrotemporal patterns of acoustic signals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation / methods
  • Animals
  • Auditory Cortex / cytology
  • Auditory Cortex / physiology*
  • Cats
  • Neurons / physiology*