The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice

Neuroscience. 2001;105(4):1019-30. doi: 10.1016/s0306-4522(01)00240-8.

Abstract

The germinative ventricular zone of embryonic brain contains neural lineage progenitor cells that give rise to neurons, astrocytes and oligodendrocytes. The ability to generate neurons persists at adulthood in restricted brain areas. During development, many growth factors exert their effects by interacting with tyrosine kinase receptors and activate the phosphatidylinositol 3-kinase and the Ras/MAP kinase pathways. By its ability to modulate these pathways, the recently identified Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 2, SHIP2, has the potential to regulate neuronal development. Using in situ hybridization technique with multiple synthetic oligonucleotides, we demonstrated that SHIP2 mRNA was highly expressed in the ventricular zone at early embryonic stages and subventricular zones at latter stages of brain and spinal cord and in the sympathetic chain. No significant expression was seen in differentiated fields. This restricted expression was maintained from embryonic day 11.5 to birth. In the periphery, large expression was detected in muscle and kidney and moderate expression in thyroid, pituitary gland, digestive system and bone. In the adult brain, SHIP2 was mainly restricted in structures containing neural stem cells such as the anterior subventricular zone, the rostral migratory stream and the olfactory tubercle. SHIP2 was also detected in the choroid plexuses and the granular layer of the cerebellum. The specificity of SHIP2 expression in neural stem cells was further demonstrated by (i) the dramatic increase in SHIP2 mRNA signal in neural cell adhesion molecule (N-CAM)-deficient mice, which present an accumulation of progenitor cells in the anterior subventricular zone and the rostral migratory stream, (ii) the abundant expression of 160-kDa SHIP2 by western blotting in proliferating neurospheres in culture and its downregulation in non-proliferating differentiated neurospheres. In conclusion, the close correlation between the pattern of SHIP2 expression in the brain and the proliferative and early differentiative events suggests that the phosphatase SHIP2 may have important roles in neural development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / metabolism*
  • Animals
  • Brain / embryology*
  • Brain / metabolism*
  • Cells, Cultured
  • Cytological Techniques
  • Female
  • Fetus / metabolism
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Molecular Probes
  • Neural Cell Adhesion Molecules / deficiency
  • Neurons / metabolism
  • Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
  • Phosphoric Monoester Hydrolases / genetics
  • Phosphoric Monoester Hydrolases / metabolism*
  • RNA, Messenger / metabolism
  • Tissue Distribution

Substances

  • Molecular Probes
  • Neural Cell Adhesion Molecules
  • RNA, Messenger
  • Phosphoric Monoester Hydrolases
  • INPPL1 protein, human
  • Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases