Radula-centric and odontophore-centric kinematic models of swallowing in Aplysia californica

J Exp Biol. 2002 Jul;205(Pt 14):2029-51. doi: 10.1242/jeb.205.14.2029.

Abstract

Two kinematic models of the radula/odontophore of the marine mollusc Aplysia californica were created to characterize the movement of structures inside the buccal mass during the feeding cycle in vivo. Both models produce a continuous range of three-dimensional shape changes in the radula/odontophore, but they are fundamentally different in construction. The radulacentric model treats the radular halves as rigid bodies that can pitch, yaw and roll relative to a fixed radular stalk, thus creating a three-dimensional shape. The odontophore-centric model creates a globally convex solid representation of the radula/odontophore directly, which then constrains the positions and shapes of internal structures. Both radula/odontophore models are placed into a pre-existing kinematic model of the I1/I3 and I2 muscles to generate three-dimensional representations of the entire buccal mass. High-temporal-resolution, mid-sagittal magnetic resonance (MR) images of swallowing adults in vivo are used to provide non-invasive, artifact-free shape and position parameter inputs for the models. These images allow structures inside the buccal mass to be visualized directly, including the radula, radular stalk and lumen of the I1/I3 cavity. Both radula-centric and odontophore-centric models were able to reproduce two-dimensional, mid-sagittal radula/odontophore and buccal mass kinematics, but the odontophore-centric model's predictions of I1/I3, I2 and I7 muscle dimensions more accurately matched data from MR-imaged adults and transilluminated juveniles.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Aplysia / anatomy & histology
  • Aplysia / growth & development
  • Aplysia / physiology*
  • Biomechanical Phenomena
  • Deglutition / physiology*
  • Magnetic Resonance Imaging
  • Models, Biological