Regularized higher-order in vivo shimming

Magn Reson Med. 2002 Oct;48(4):715-22. doi: 10.1002/mrm.10267.

Abstract

A regularized algorithm is presented for localized in vivo shimming. The technique uses first- (X,Y,Z), second- (Z(2), ZX, ZY, X(2)-Y(2), XY), and third-order (Z(3)) shim coils, and is robust when applied to arbitrarily-shaped, as well as off-center, regions of interest (ROIs). A single-shot spiral pulse sequence is used for rapid field map acquisition, and a least-squares calculation of the shim currents is performed to minimize the root-mean-square (RMS) value of the B(0) inhomogeneity over a user-selected ROI. The use of a singular value decomposition (SVD) in combination with a regularization algorithm significantly improves the numerical stability of the least-squares fitting procedure. The fully automated shimming package is implemented on a 3 T GE Signa system and its robust performance is demonstrated in phantom and in vivo studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Brain / anatomy & histology
  • Humans
  • Magnetic Resonance Spectroscopy / methods*