A multisensory zone in rat parietotemporal cortex: intra- and extracellular physiology and thalamocortical connections

J Comp Neurol. 2003 May 26;460(2):223-37. doi: 10.1002/cne.10637.

Abstract

Multisensory integration is essential for the expression of complex behaviors in humans and animals. However, few studies have investigated the neural sites where multisensory integration may occur. Therefore, we used electrophysiology and retrograde labeling to study a region of the rat parietotemporal cortex that responds uniquely to auditory and somatosensory multisensory stimulation. This multisensory responsiveness suggests a functional organization resembling multisensory association cortex in cats and primates. Extracellular multielectrode surface mapping defined a region between auditory and somatosensory cortex where responses to combined auditory/somatosensory stimulation were larger in amplitude and earlier in latency than responses to either stimulus alone. Moreover, multisensory responses were nonlinear and differed from the summed unimodal responses. Intracellular recording found almost exclusively multisensory cells that responded to both unisensory and multisensory stimulation with excitatory postsynaptic potentials (EPSPs) and/or action potentials, conclusively defining a multisensory zone (MZ). In addition, intracellular responses were similar to extracellular recordings, with larger and earlier EPSPs evoked by multisensory stimulation, and interactions suggesting nonlinear postsynaptic summation to combined stimuli. Thalamic input to MZ from unimodal auditory and somatosensory thalamic relay nuclei and from multisensory thalamic regions support the idea that parallel thalamocortical projections may drive multisensory functions as strongly as corticocortical projections. Whereas the MZ integrates uni- and multisensory thalamocortical afferent streams, it may ultimately influence brainstem multisensory structures such as the superior colliculus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Survival / physiology
  • Evoked Potentials, Auditory / physiology
  • Extracellular Space / physiology*
  • Intracellular Fluid / physiology*
  • Male
  • Parietal Lobe / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Temporal Lobe / physiology*
  • Thalamus / physiology*