Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat

Brain Res. 2003 Apr 25;970(1-2):238-41. doi: 10.1016/s0006-8993(03)02347-3.

Abstract

Unilateral T13 hemisection of the rat spinal cord produces a model of chronic spinal cord injury (SCI) that is characterized by bilateral hyperexcitability of lumbar dorsal horn neurons, and behavioral signs of central pain. While we have demonstrated that responsiveness of multireceptive (MR) dorsal horn neurons is dramatically increased at 28 days after injury, the effects of acute hemisection are unknown and predicted to be different than observed chronically. In the present study, the consequences of T13 hemisection are examined acutely at 45 min in MR neurons both ipsilateral and contralateral to the site of injury, and compared to the same class of cells at 28 days after injury (n=20 cells total per group: 2-3 cells/side of the cord from n=5 animals). Acutely, ipsilateral to the hemisection, both spontaneous and evoked activity of MR neurons were significantly increased, whereas contralaterally, only evoked activity was significantly increased. In animals 28 days after hemisection, spontaneous activity of MR neurons was comparable to intact levels ipsilaterally, and cells exhibited hyperexcitability to evoked stimuli bilaterally. Expansion of cutaneous receptive fields was observed only in hindpaws ipsilateral to the lesion, acutely. These results demonstrate dynamic plasticity in properties of dorsal horn somatosensory neurons after SCI.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Male
  • Neuronal Plasticity / physiology*
  • Neurons, Afferent / physiology*
  • Posterior Horn Cells / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Spinal Cord Injuries / physiopathology*
  • Thoracic Vertebrae
  • Time Factors