Modulation of pH by neuronal activity

Trends Neurosci. 1992 Oct;15(10):396-402. doi: 10.1016/0166-2236(92)90191-a.

Abstract

Although the requirement for a strict regulation of pH in the brain is frequently emphasized, recent studies indicate that neuronal activity gives rise to significant changes in intracellular and extracellular pH. Given the sensitivity of many ion channels to hydrogen ions, this modulation of local pH might influence brain function, particularly where pH shifts are sufficiently large and rapid. Studies using pH-sensitive microelectrodes have demonstrated marked cellular and regional variability of activity-dependent pH shifts, and have begun to uncover several of their underlying mechanisms. Accumulating evidence suggests that regional and subcellular pH dynamics are governed by the respective localization of glial cells, ligand-gated ion channels, and extracellular and intracellular carbonic anhydrase.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • Hydrogen-Ion Concentration
  • Neurons / physiology*