Group I metabotropic glutamate receptor actions in oriens/alveus interneurons of rat hippocampal CA1 region

Brain Res. 2004 Mar 12;1000(1-2):92-101. doi: 10.1016/j.brainres.2003.11.046.

Abstract

Group I metabotropic glutamate receptors (mGluRs) are important for hippocampal interneuron function. We used whole-cell recording and confocal imaging to characterize group I mGluR actions in CA1 oriens/alveus interneurons in slices. In tetrodotoxin and ionotropic glutamate receptor antagonists, the group I mGluR specific agonist DHPG increased intradendritic Ca(2+) levels and depolarized interneurons, whereas the group II mGluR specific agonist DCG-IV and the group III mGluR specific agonist L-AP4 did not. DHPG-induced depolarizing and Ca(2+) responses were antagonized by the group I mGluR antagonist 4CPG, but only Ca(2+) responses were significantly inhibited by the mGluR1 antagonist CPCCOEt. DHPG-induced depolarizing responses were not blocked by the inositol-1,4,5-trisphosphate (IP(3)) receptor inhibitor heparin, the protein kinase C (PKC) antagonists GF-109203X, or the inhibitor of phospholipase C (PLC) U73122. Thus, these responses to DHPG may not be transduced by the PLC-->IP(3)/diacylglycerol (DAG) pathway classically linked to group I mGluRs. DHPG-induced depolarizations were not blocked by intracellular GDP beta S or bath-application of N-ethylmaleimide (NEM), suggesting the involvement of a G protein-independent pathway. Our findings indicate that group I mGluRs induce a depolarization of oriens/alveus interneurons via a G protein-independent mechanism different from their classic signalling pathway. Since depolarizations are associated with intracellular Ca(2+) rises, these actions may be important for their synaptic plasticity and vulnerability to excitotoxicity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Excitatory Amino Acid Agonists / pharmacology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Hippocampus / drug effects
  • Hippocampus / physiology*
  • Interneurons / drug effects
  • Interneurons / physiology*
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Metabotropic Glutamate / agonists
  • Receptors, Metabotropic Glutamate / antagonists & inhibitors
  • Receptors, Metabotropic Glutamate / physiology*
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology

Substances

  • Excitatory Amino Acid Agonists
  • Excitatory Amino Acid Antagonists
  • Receptors, Metabotropic Glutamate
  • metabotropic glutamate receptor type 1