Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes

Anesthesiology. 2004 Jun;100(6):1531-7. doi: 10.1097/00000542-200406000-00028.

Abstract

Background: Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-D-aspartate (NMDA) receptors are thought to play a major role in development of postoperative pain and opiate tolerance. The authors hypothesized that Ultiva directly stimulates human NMDA receptors.

Methods: To test this hypothesis, the authors expressed human NR1A/NR2A and NR1A/NR2B NMDA receptors in Xenopus laevis oocytes by injection of messenger RNA prepared in vitro. After protein expression, they used a two-electrode voltage clamp to measure currents induced by NMDA receptor agonists and opioids.

Results: Noninjected cells were unresponsive to all compounds tested. Glutamate/glycine (1 nM-1 mM each) or Ultiva (0.01 pM-0.1 mM) stimulated NMDA receptors concentration dependently. NR1A/2A EC50 values were 8.0 microM/12 microM for glutamate/glycine and 3.5 nM for Ultiva, and NR1A/2B EC50 values were 3.9 microM/1.9 microM for glutamate/glycine and 0.82 microM for Ultiva. Glycine in combination with Ultiva showed no additive effect compared with Ultiva alone. Ultiva-induced currents were inhibited by MK-801 (pore blocker) but not by 7-CK (glycine antagonist), D-AP5 (glutamate antagonist), or naloxone. Fentanyl (10 microM) did not stimulate NMDA receptors.

Conclusion: These data indicate that Ultiva but not fentanyl stimulates NMDA receptors of different subunit combinations (NR1A/2A, NR1A/2B). The mechanism seems to be allosteric activation of the NMDA receptor.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dose-Response Relationship, Drug
  • Female
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / physiology
  • Humans
  • Microinjections
  • Oocytes / drug effects
  • Oocytes / metabolism
  • Piperidines / pharmacology*
  • Receptors, N-Methyl-D-Aspartate / biosynthesis
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Remifentanil
  • Xenopus laevis

Substances

  • Piperidines
  • Receptors, N-Methyl-D-Aspartate
  • Recombinant Proteins
  • Remifentanil