Additive effects of emotional content and spatial selective attention on electrocortical facilitation

Cereb Cortex. 2005 Aug;15(8):1187-97. doi: 10.1093/cercor/bhi001. Epub 2004 Dec 8.

Abstract

Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Analysis of Variance
  • Attention / physiology*
  • Electroencephalography / methods*
  • Emotions / physiology*
  • Female
  • Humans
  • Male
  • Photic Stimulation / methods*
  • Reaction Time / physiology*
  • Space Perception / physiology*