Role of glial cells in cerebral ischemia

Glia. 2005 Jun;50(4):281-286. doi: 10.1002/glia.20205.

Abstract

Despite intense efforts at the bench and at the bedside, few therapeutic strategies exist to combat the consequences of cerebral ischemia. Traditionally, a "neurocentric" view has dominated research in this field. Evidence is now accumulating that glial cells, in particular astrocytes, play an active and important role in the pathophysiology of cerebral ischemia. Brain energetics, water and ion homeostasis, inflammation, trophic factor production, vascular regulation, neuroneogenesis, and vasculogenesis, among others, are all under the control of glial cells. As a consequence, glial cells have been identified as promising targets for novel therapeutic approaches in brain protection. This review aims at dissecting possible protective as well as destructive roles of astrocytes (and other glial cells) in cerebral ischemia. By emphasizing open issues in this field, we hope to stimulate further research into this relatively unexplored aspect of brain pathophysiology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Brain Ischemia / metabolism
  • Brain Ischemia / pathology*
  • Brain Ischemia / physiopathology*
  • Humans
  • Neuroglia / pathology*
  • Neuroglia / physiology