In vivo multiple-mouse MRI at 7 Tesla

Magn Reson Med. 2005 Nov;54(5):1311-6. doi: 10.1002/mrm.20683.

Abstract

We developed a live high-field multiple-mouse magnetic resonance imaging method to increase the throughput of imaging studies involving large numbers of mice. Phantom experiments were performed in 7 shielded radiofrequency (RF) coils for concurrent imaging on a 7 Tesla MRI scanner outfitted with multiple transmit and receive channels to confirm uniform signal-to-noise ratio and minimal ghost artifacts across images from the different RF coils. Grid phantoms were used to measure image distortion in different positions in the coils. The brains of 7 live mice were imaged in 3D in the RF coil array, and a second array of 16 RF coils was used to 3D image the whole bodies of 16 fixed, contrast agent-perfused mice. The images of the 7 live mouse brains at 156 microm isotropic resolution and the 16 whole fixed mice at 100 microm isotropic resolution were of high quality and free of artifacts. We have thus shown that multiple-mouse MRI increases throughput for live and fixed mouse experiments by a factor equaling the number of RF coils in the scanner.

Publication types

  • Evaluation Study

MeSH terms

  • Animals
  • Equipment Design
  • Equipment Failure Analysis
  • Female
  • Image Enhancement / instrumentation*
  • Image Enhancement / methods
  • Magnetic Resonance Imaging / instrumentation*
  • Magnetic Resonance Imaging / methods
  • Magnetic Resonance Imaging / veterinary*
  • Mice / anatomy & histology*
  • Mice, Inbred C3H
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Whole Body Imaging / instrumentation*
  • Whole Body Imaging / methods
  • Whole Body Imaging / veterinary*