Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation

J Physiol Paris. 2006 Jun;99(4-6):437-54. doi: 10.1016/j.jphysparis.2006.03.001. Epub 2006 May 24.

Abstract

Reorganisation of cerebral representations has been hypothesised to underlie the recovery from ischaemic brain infarction. The mechanisms can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). Functional neuroimaging showed that reorganisation is a dynamic process beginning after stroke manifestation. In the acute stage, the mismatch between a large perfusion deficit and a smaller area with impaired water diffusion signifies the brain tissue that potentially enables recovery subsequent to early reperfusion as in thrombolysis. Single-pulse TMS showed that the integrity of the cortico-spinal tract system was critical for motor recovery within the first four weeks, irrespective of a concomitant affection of the somatosensory system. Follow-up studies over several months revealed that ischaemia results in atrophy of brain tissue adjacent to and of brain areas remote from the infarct lesion. In patients with hemiparetic stroke activation of premotor cortical areas in both cerebral hemispheres was found to underlie recovery of finger movements with the affected hand. Paired-pulse TMS showed regression of perilesional inhibition as well as intracortical disinhibition of the motor cortex contralateral to the infarction as mechanisms related to recovery. Training strategies can employ post-lesional brain plasticity resulting in enhanced perilesional activations and modulation of large-scale bihemispheric circuits.

Publication types

  • Review

MeSH terms

  • Animals
  • Brain / pathology*
  • Humans
  • Magnetic Resonance Imaging*
  • Stroke / pathology*
  • Stroke Rehabilitation
  • Transcranial Magnetic Stimulation*