Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions

J Comp Neurol. 1991 Jan 22;303(4):617-36. doi: 10.1002/cne.903030408.

Abstract

In this study we used serial section electron microscopy and three-dimensional reconstructions to examine four midget ganglion cells of the human retina. The four cells were located in the parafoveal retina 2.5 mm or 8 degrees from the foveal center. Both type a (with dendritic trees in distal inner plexiform layer) and type b (with dendritic trees in proximal inner plexiform layer) midget ganglion cells have been studied. These cells have dendritic trees of 7-9 microns diameter, and their complete dendritic trees in the neuropil of the inner plexiform layer can be analyzed, as well as the bipolar cell axon terminals having synaptic input, by a study of 100-150 serial ultrathin sections. Type a midget ganglion cells appear to be in a one-to-one relationship with flat midget bipolar cell axon terminals ending in distal inner plexiform layer. Type b midget ganglion cells are in a one-to-one synaptic relationship with invaginating midget bipolar cell axon terminals in proximal inner plexiform layer. The midget bipolar cells primarily involved with the midget ganglion cells do not contact other ganglion cell dendrites. In other words, midget bipolar cells appear to be in exclusive contact with single midget ganglion cells in the human retina. The midget ganglion cells receive most of their input from their associated midget bipolar cells in the form of ribbon synapses at dyads or monads (55-81 ribbons total), although ribbonless synapses are seen occasionally. In all four midget ganglion cells reconstructed, one or two other bipolar cell axon terminals, presumed to be from wide-field bipolar types, provide 1-3 ribbon synapses each. The number of amacrine synapses upon a midget ganglion cell's dendritic tree is approximately equal to the number of bipolar ribbon inputs (43%-56% bipolar ribbons: 44%-57% amacrine synapses). We assume from our knowledge of response characteristics of ganglion cells in other mammalian retinas (Nelson et al., '78: J. Neurophysiol. 41:427-483), that the type a midget ganglion cell and its exclusive connectivity with a flat midget bipolar cell forms a single cone connected OFF-center pathway, whereas the type b midget ganglion cell with its exclusive connectivity to an invaginating midget bipolar cell forms a single cone connected ON-center pathway, through the retina to the brain.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Female
  • Haplorhini
  • Humans
  • Image Processing, Computer-Assisted*
  • Microscopy, Electron
  • Retinal Ganglion Cells / ultrastructure*
  • Staining and Labeling