Synchronous high-voltage spindles in the cortex-basal ganglia network of awake and unrestrained rats

Eur J Neurosci. 2007 Feb;25(3):772-84. doi: 10.1111/j.1460-9568.2007.05305.x.

Abstract

Synchronous oscillations in various frequency ranges have been recorded in several nuclei of the basal ganglia (BG) and are thought to be an information processing mechanism. High-voltage spindles (HVSs) are 5-13 Hz spike-and-wave oscillations, which are commonly recorded in rats and which have been reported in some recent studies where their occurrence in the BG has been investigated. We recorded single neurons and local field potentials (LFPs) simultaneously in the motor cortex, striatum and substantia nigra pars reticulata (SNr) of the freely moving rat. We took advantage of the high level of synchronization observed during HVSs to study signal transmission in the cortex-BG network in the awake animals. The results show that LFPs are synchronized in the motor cortex, striatum and SNr during HVS episodes and that the latter propagate from the cortex to the SNr via the striatum. Moreover, > 50% of single neurons in each of these structures are triggered by the HVS. Following the discharge of cortical cells, SNr neurons are first inhibited after approximately 19 ms and then activated after approximately 45 ms. This response is probably driven by the direct and indirect pathways, respectively, without any involvement of the hyperdirect pathway. Here, it is shown that cortex-BG connectivity can be studied using physiological signals in the freely moving animal as opposed to artificial stimulation under anaesthetized conditions. This opens the door to further studies under various experimental conditions, such as animal models of basal ganglia disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basal Ganglia / cytology*
  • Basal Ganglia / physiology*
  • Electrodes, Implanted
  • Electrophysiology
  • Male
  • Models, Neurological
  • Motor Activity / physiology*
  • Motor Cortex / cytology*
  • Motor Cortex / physiology*
  • Neural Pathways
  • Periodicity
  • Rats
  • Rats, Wistar
  • Substantia Nigra / cytology
  • Substantia Nigra / physiology
  • Wakefulness / physiology*