The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis

J Cogn Neurosci. 2009 Mar;21(3):489-510. doi: 10.1162/jocn.2008.21029.

Abstract

A core brain network has been proposed to underlie a number of different processes, including remembering, prospection, navigation, and theory of mind [Buckner, R. L., & Carroll, D. C. Self-projection and the brain. Trends in Cognitive Sciences, 11, 49-57, 2007]. This purported network-medial prefrontal, medial-temporal, and medial and lateral parietal regions-is similar to that observed during default-mode processing and has been argued to represent self-projection [Buckner, R. L., & Carroll, D. C. Self-projection and the brain. Trends in Cognitive Sciences, 11, 49-57, 2007] or scene-construction [Hassabis, D., & Maguire, E. A. Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299-306, 2007]. To date, no systematic and quantitative demonstration of evidence for this common network has been presented. Using the activation likelihood estimation (ALE) approach, we conducted four separate quantitative meta-analyses of neuroimaging studies on: (a) autobiographical memory, (b) navigation, (c) theory of mind, and (d) default mode. A conjunction analysis between these domains demonstrated a high degree of correspondence. We compared these findings to a separate ALE analysis of prospection studies and found additional correspondence. Across all domains, and consistent with the proposed network, correspondence was found within the medial-temporal lobe, precuneus, posterior cingulate, retrosplenial cortex, and the temporo-parietal junction. Additionally, this study revealed that the core network extends to lateral prefrontal and occipital cortices. Autobiographical memory, prospection, theory of mind, and default mode demonstrated further reliable involvement of the medial prefrontal cortex and lateral temporal cortices. Autobiographical memory and theory of mind, previously studied as distinct, exhibited extensive functional overlap. These findings represent quantitative evidence for a core network underlying a variety of cognitive domains.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autobiographies as Topic*
  • Brain / anatomy & histology
  • Brain / physiology*
  • Brain Mapping*
  • Diagnostic Imaging
  • Humans
  • Memory / physiology*
  • Meta-Analysis as Topic*
  • Models, Psychological