Two pathways for lysophosphatidic acid production

Biochim Biophys Acta. 2008 Sep;1781(9):513-8. doi: 10.1016/j.bbalip.2008.06.005. Epub 2008 Jun 24.

Abstract

Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) is a simple phospholipid but displays an intriguing cell biology that is mediated via interactions with G protein-coupled seven transmembrane receptors (GPCRs). So far, five GPCRs, designated LPA1-5, and, more recently, two additional GPCRs, GPR87 and P2Y5, have been identified as receptors for LPA. These LPA receptors can be classified into two families, the EDG and P2Y families, depending on their primary structures. Recent studies on gene targeting mice and family diseases of these receptors revealed that LPA is involved in both pathological and physiological states including brain development (LPA1), neuropathy pain (LPA1), lung fibrosis (LPA1), renal fibrosis (LPA1) protection against radiation-induced intestinal injury (LPA2), implantation (LPA3) and hair growth (P2Y5). LPA is produced both in cells and biological fluids, where multiple synthetic reactions occur. There are at least two pathways for LPA production. In serum or plasma, LPA is predominantly produced by a plasma enzyme called autotaxin (ATX). ATX is a multifunctional ectoenzyme and is involved in many patho-physiological conditions such as cancer, neuropathy pain, lymphocyte tracking in lymph nodes, obesity, diabetes and embryonic blood vessel formation. LPA is also produced from phosphatidic acid (PA) by its deacylation catalyzed by phospholipase A (PLA)-type enzymes. However, the physiological roles of this pathway as well as the enzymes involved remained to be solved. A number of phospholipase A1 and A2 isozymes could be involved in this pathway. One PA-selective PLA1 called mPA-PLA1alpha/LIPH is specifically expressed in hair follicles, where it has a critical role in hair growth by producing LPA through a novel LPA receptor called P2Y5.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Lipase / metabolism
  • Lysophospholipids / biosynthesis*
  • Lysophospholipids / chemistry
  • Phosphodiesterase I / metabolism
  • Pyrophosphatases / metabolism
  • Receptors, Lysophosphatidic Acid / metabolism

Substances

  • Lysophospholipids
  • Receptors, Lysophosphatidic Acid
  • Lipase
  • Phosphodiesterase I
  • Pyrophosphatases
  • lysophosphatidic acid