Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus

J Neurophysiol. 1991 Jun;65(6):1528-41. doi: 10.1152/jn.1991.65.6.1528.

Abstract

1. The lateral geniculate nucleus is the primary thalamic relay through which retinal signals pass en route to cortex. This relay is gated and can be suppressed by activity among local inhibitory neurons that use gamma-aminobutyric acid (GABA) as a neurotransmitter. In the cat, a major source of this GABAergic inhibition seems to arise from cells of the perigeniculate nucleus, which lies just dorsal to the A-laminae of the lateral geniculate nucleus. However, the morphological characteristics of perigeniculate cells, and particularly the projection patterns of their axons, have never been fully characterized. We thus examined the morphology of these cells: individually by intracellular injection of horseradish peroxidase (HRP) and en masse with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL). 2. We recorded from 12 perigeniculate cells that we impaled and successfully labeled with HRP. These cells exhibited response properties generally consistent with those described previously. They had long response latencies to stimulation of the optic chiasm and relatively large, often diffuse, receptive fields. The visually evoked responses of most of the cells were dominated by one eye. Compared with cells of the lateral geniculate nucleus, perigeniculate cells had large somata (517 +/- 136 microns 2 in cross-sectional area, mean +/- SD), which were fusiform or multipolar in shape, and dendritic arbors that extended a considerable distance (1,095 +/- 167 microns) parallel to the border between the perigeniculate and lateral geniculate nuclei. Terminal arbors of some dendrites were quite complex and beaded. 3. The axons of six perigeniculate cells were labeled sufficiently well to trace and reconstruct over a considerable distance. Each of these axons formed branches that descended to innervate the lateral geniculate nucleus, and this geniculate innervation was exclusively limited to the A-laminae. Terminal boutons within the A-laminae were nearly all en passant, which gave the axons a beaded appearance. Furthermore, branches of five of these six axons provided local innervation of the perigeniculate nucleus, generally within each labeled cell's own dendritic arbor. Three of the cells also exhibited an axon branch that extended medially and caudally away from the soma, but we were unable to trace these axon branches to their targets. 4. Within the lateral geniculate nucleus, each arbor of perigeniculate axons derived from two main components. One was a narrow, sparse medial component that innervated laminae A and A1.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axons / physiology*
  • Cats
  • Dendrites / ultrastructure
  • Electric Stimulation
  • Electrodes
  • Electroencephalography
  • Electrophysiology
  • Geniculate Bodies / cytology
  • Geniculate Bodies / physiology*
  • Horseradish Peroxidase
  • Neural Pathways / physiology
  • Phytohemagglutinins

Substances

  • Phytohemagglutinins
  • leukoagglutinins, plants
  • Horseradish Peroxidase