P-TEFb- the final frontier

Cell Div. 2009 Sep 2:4:19. doi: 10.1186/1747-1028-4-19.

Abstract

Regulation of gene expression is essential to all aspects of physiological processes in single-cell as well as multicellular organisms. It gives ultimately cells the ability to efficiently respond to extra- and intracellular stimuli participating in cell cycle, growth, differentiation and survival. Regulation of gene expression is executed primarily at the level of transcription of specific mRNAs by RNA polymerase II (RNAPII), typically in several distinct phases. Among them, transcription elongation is positively regulated by the positive transcription elongation factor b (P-TEFb), consisting of CDK9 and cyclin T1, T2 or K. P-TEFb enables transition from abortive to productive transcription elongation by phosphorylating carboxyl-terminal domain (CTD) in RNAPII and negative transcription elongation factors. Over the years, we have learned a great deal about molecular composition of P-TEFb complexes, their assembly and their role in transcription of specific genes, but function of P-TEFb in other physiological processes was not apparent until just recently. In light of emerging discoveries connecting P-TEFb to regulation of cell cycle, development and several diseases, I would like to discuss these observations as well as future perspectives.