Optical interrogation of neural circuits in Caenorhabditis elegans

Nat Methods. 2009 Dec;6(12):891-6. doi: 10.1038/nmeth.1397. Epub 2009 Nov 8.

Abstract

The nematode Caenorhabditis elegans has a compact nervous system with only 302 neurons. Whereas most of the synaptic connections between these neurons have been identified by electron microscopy serial reconstructions, functional connections have been inferred between only a few neurons through combinations of electrophysiology, cell ablation, in vivo calcium imaging and genetic analysis. To map functional connections between neurons, we combined in vivo optical stimulation with simultaneous calcium imaging. We analyzed the connections from the ASH sensory neurons and RIM interneurons to the command interneurons AVA and AVD. Stimulation of ASH or RIM neurons using channelrhodopsin-2 (ChR2) resulted in activation of AVA neurons, evoking an avoidance behavior. Our results demonstrate that we can excite specific neurons expressing ChR2 while simultaneously monitoring G-CaMP fluorescence in several other neurons, making it possible to rapidly decipher functional connections in C. elegans neural circuits.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Caenorhabditis elegans / cytology
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans / physiology*
  • Calcium / metabolism
  • Interneurons / metabolism
  • Interneurons / physiology
  • Optics and Photonics*

Substances

  • Calcium