The leading sense: supramodal control of neurophysiological context by attention

Neuron. 2009 Nov 12;64(3):419-30. doi: 10.1016/j.neuron.2009.10.014.

Abstract

Attending to a stimulus enhances its neuronal representation, even at the level of primary sensory cortex. Cross-modal modulation can similarly enhance a neuronal representation, and this process can also operate at the primary cortical level. Phase reset of ongoing neuronal oscillatory activity has been shown to be an important element of the underlying modulation of local cortical excitability in both cases. We investigated the influence of attention on oscillatory phase reset in primary auditory and visual cortices of macaques performing an intermodal selective attention task. In addition to responses "driven" by preferred modality stimuli, we noted that both preferred and nonpreferred modality stimuli could "modulate" local cortical excitability by phase reset of ongoing oscillatory activity, and that this effect was linked to their being attended. These findings outline a supramodal mechanism by which attention can control neurophysiological context, thus determining the representation of specific sensory content in primary sensory cortex.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Attention / physiology*
  • Auditory Cortex / physiology*
  • Auditory Perception / physiology*
  • Evoked Potentials, Auditory
  • Evoked Potentials, Visual
  • Macaca
  • Male
  • Microelectrodes
  • Neurons / physiology
  • Neuropsychological Tests
  • Perceptual Masking / physiology
  • Periodicity
  • Photic Stimulation
  • Theta Rhythm
  • Visual Cortex / physiology*
  • Visual Perception / physiology*