PTEN/mTOR and axon regeneration

Exp Neurol. 2010 May;223(1):45-50. doi: 10.1016/j.expneurol.2009.12.032. Epub 2010 Jan 14.

Abstract

How axon regeneration is controlled in both PNS and CNS remains elusive. Mechanistic studies of axon growth during development and axon regeneration after injury reveal the PTEN dependent molecular mechanism as a commonality. This pathway could impact the processes occurring in the neuronal soma, such as mTOR-regulated protein translation, and in the axons, such as cytoskeleton assembly. In this review, we will discuss the current understanding of the involvement of these processes in the regulation of axon growth and the potential implication in promoting axon regeneration after injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Axons / metabolism*
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Models, Biological
  • Nerve Regeneration / physiology*
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism*
  • Peripheral Nervous System Diseases / metabolism*
  • Peripheral Nervous System Diseases / physiopathology*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Signal Transduction / physiology
  • TOR Serine-Threonine Kinases

Substances

  • Intracellular Signaling Peptides and Proteins
  • MTOR protein, human
  • Protein Serine-Threonine Kinases
  • TOR Serine-Threonine Kinases
  • PTEN Phosphohydrolase