Application of Fluoro-Jade C in acute and chronic neurodegeneration models: utilities and staining differences

Acta Histochem Cytochem. 2009 Dec 29;42(6):171-9. doi: 10.1267/ahc.09018. Epub 2009 Dec 22.

Abstract

Recent neuropathological studies have shown that Fluoro-Jade C (FJC), an anionic fluorescent dye, is a good marker of degenerating neurons. However, those studies have mostly examined acute rather than chronic models of neurodegeneration. We therefore compared FJC staining using the intrastriatal 6-hydroxydopamine (6-OHDA)-injected rat as an acute model and the zitter rat as a chronic model, as both show dopaminergic (DA) neurodegeneration. In the 6-OHDA-injected rat, FJC-positive neurons were found in the substantia nigra pars compacta (SNc) before the loss of tyrosine hydroxylase (TH)-positive DA neurons. In the zitter rat, FJC-labeled fibers were first detected at 1 month old (1M) and were considerably increased in the striatum at 4M, whereas FJC-labeled cell bodies were found at 4M, but not at 1M in the SNc. Furthermore, FJC-labeled neurons of the zitter rat showed TH-immunoreactivity in fibers, but little in cell bodies, while those from the 6-OHDA-injected rat showed TH-immunoreactivity even in the cell bodies. These results demonstrate that FJC is a useful tool for detecting chronically degenerating neurons, and suggest that intracellular substances bound to FJC may accumulate in the cell bodies from fibers at a slower rate in the chronic model than in the acute model.

Keywords: 6-OHDA; Fluoro-Jade C; chronic neurodegenerative model; dopaminergic neurons; zitter rat.