The regulation of synaptic function by alpha-synuclein

Commun Integr Biol. 2010 Mar;3(2):106-9. doi: 10.4161/cib.3.2.10964.

Abstract

The cytosolic protein alpha-synuclein is enriched at the pre-synaptic terminals of almost all types of neurons in the central nervous system. alpha-Synuclein overexpression and the expression of three different mutants have been shown to sustain the pathogenesis of selected forms of Parkinson's disease. The localization of the protein and the defects found in knocked out or transgenic animals suggest a role of alpha-synuclein in the regulation of synaptic efficiency. However, the precise function of the protein and the molecular mechanisms of its action are still unclear. At synapses the synaptic vesicle release cycle is a finely tuned process composed of sequential steps that require the interconnected participation of several proteins and cytoskeletal elements. Actin microfilaments are required for the regulation of synaptic vesicle mobilization between different functional pools, for their organization at the active zone and influence the exocytotic process. We recently identified actin as a possible target of alpha-synuclein function. Through its binding to actin and the regulation of actin dynamics, alpha-synuclein could participate in the tuning of the vesicle release process, thereby modulating synaptic function and plasticity.

Keywords: actin cytoskeleton; exocytosis; synaptic plasticity; synaptic vesicles; α-synuclein.