Children with reading disability show brain differences in effective connectivity for visual, but not auditory word comprehension

PLoS One. 2010 Oct 25;5(10):e13492. doi: 10.1371/journal.pone.0013492.

Abstract

Background: Previous literature suggests that those with reading disability (RD) have more pronounced deficits during semantic processing in reading as compared to listening comprehension. This discrepancy has been supported by recent neuroimaging studies showing abnormal activity in RD during semantic processing in the visual but not in the auditory modality. Whether effective connectivity between brain regions in RD could also show this pattern of discrepancy has not been investigated.

Methodology/principal findings: Children (8- to 14-year-olds) were given a semantic task in the visual and auditory modality that required an association judgment as to whether two sequentially presented words were associated. Effective connectivity was investigated using Dynamic Causal Modeling (DCM) on functional magnetic resonance imaging (fMRI) data. Bayesian Model Selection (BMS) was used separately for each modality to find a winning family of DCM models separately for typically developing (TD) and RD children. BMS yielded the same winning family with modulatory effects on bottom-up connections from the input regions to middle temporal gyrus (MTG) and inferior frontal gyrus(IFG) with inconclusive evidence regarding top-down modulations. Bayesian Model Averaging (BMA) was thus conducted across models in this winning family and compared across groups. The bottom-up effect from the fusiform gyrus (FG) to MTG rather than the top-down effect from IFG to MTG was stronger in TD compared to RD for the visual modality. The stronger bottom-up influence in TD was only evident for related word pairs but not for unrelated pairs. No group differences were noted in the auditory modality.

Conclusions/significance: This study revealed a modality-specific deficit for children with RD in bottom-up effective connectivity from orthographic to semantic processing regions. There were no group differences in connectivity from frontal regions, suggesting that the core deficit in RD is not in top-down modulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Bayes Theorem
  • Child
  • Comprehension*
  • Hearing*
  • Humans
  • Learning Disabilities / physiopathology*
  • Reading*
  • Vision, Ocular*