The role of spiking and bursting pacemakers in the neuronal control of breathing

J Biol Phys. 2011 Jun;37(3):241-61. doi: 10.1007/s10867-011-9214-z. Epub 2011 Mar 22.

Abstract

Breathing is controlled by a distributed network involving areas in the neocortex, cerebellum, pons, medulla, spinal cord, and various other subcortical regions. However, only one area seems to be essential and sufficient for generating the respiratory rhythm: the preBötzinger complex (preBötC). Lesioning this area abolishes breathing and following isolation in a brain slice the preBötC continues to generate different forms of respiratory activities. The use of slice preparations led to a thorough understanding of the cellular mechanisms that underlie the generation of inspiratory activity within this network. Two types of inward currents, the persistent sodium current (I(NaP)) and the calcium-activated non-specific cation current (I(CAN)), play important roles in respiratory rhythm generation. These currents give rise to autonomous pacemaker activity within respiratory neurons, leading to the generation of intrinsic spiking and bursting activity. These membrane properties amplify as well as activate synaptic mechanisms that are critical for the initiation and maintenance of inspiratory activity. In this review, we describe the dynamic interplay between synaptic and intrinsic membrane properties in the generation of the respiratory rhythm and we relate these mechanisms to rhythm generating networks involved in other behaviors.

Keywords: Bursting; Calcium-activated non-specific cation current; Pacemaker; Persistent sodium current; Respiration; Rhythm generation; preBötzinger complex.