Masking of sounds by a background noise--cochlear mechanical correlates

J Physiol. 2013 May 15;591(10):2705-21. doi: 10.1113/jphysiol.2012.248260. Epub 2013 Mar 11.

Abstract

In the search for cochlear correlates of auditory masking by noise stimuli, we recorded basilar membrane (BM) vibrations evoked by either tone or click signals in the presence of varying levels of background noise. The BM vibrations were recorded from basal regions in healthy cochleae of anaesthetized chinchilla and gerbil. Non-linear interactions that could underpin various aspects of psychophysical masking data, including both compression and suppression at the BM level, were observed. The suppression effects, whereby the amplitude of the responses to each stimulus component could be reduced, depended on the relative intensities of the noise and the tones or clicks. Only stimulus components whose frequencies fell inside the non-linear region of the recording site, i.e. around its characteristic frequency (CF), were affected by presentation of the 'suppressing' stimulus (which could be either the tone or the noise). Mutual suppression, the simultaneous reduction of the responses to both tones and noise components, was observed under some conditions, but overall reductions of BM vibration were rarely observed. Moderate- to high-intensity tones suppressed BM responses to low-intensity Gaussian stimuli, including both broadband and narrowband noise. Suppression effects were larger for spectral components of the noise response that were closer to the CF. In this regime, the tone and noise stimuli became the suppressor and probe signals, respectively. This study provides the first detailed observations of cochlear mechanical correlates of the masking effects of noise. Mechanical detection thresholds for tone signals, which were arbitrarily defined using three criteria, are shown to increase in almost direct proportion to the noise level for low and moderately high noise levels, in a manner that resembles the findings of numerous psychophysical observations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Basilar Membrane / physiology*
  • Chinchilla
  • Gerbillinae
  • Perceptual Masking / physiology*
  • Signal-To-Noise Ratio
  • Sound*