Time-varying coupling of EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor evoked potentials amplitude: an EEG-TMS study

Hum Brain Mapp. 2014 May;35(5):1969-80. doi: 10.1002/hbm.22306. Epub 2013 Jul 19.

Abstract

Purpose: Motor evoked potentials (MEPs) elicited by a train of consecutive, individual transcranial magnetic stimuli demonstrate fluctuations in amplitude with respect to time when recorded from a relaxed muscle. The influence of time-varying, instantaneous modifications of the electroencephalography (EEG) properties immediately preceding the transcranial magnetic stimulation (TMS) has rarely been explored. The aim of this study was to investigate the influence of the pre-TMS motor cortex and related areas EEG profile on time variants of the MEPs amplitude.

Method: MRI-navigated TMS and multichannel TMS-compatible EEG devices were used. For each experimental subject, post-hoc analysis of the MEPs amplitude that was based on the 50th percentile of the MEPs amplitude distribution provided two subgroups corresponding to "high" (large amplitude) and "low" (small amplitude). The pre-stimulus EEG characteristics (coherence and spectral profile) from the motor cortex and related areas were analyzed separately for the "high" and "low" MEPs and were then compared.

Results: On the stimulated hemisphere, EEG coupling was observed more often in the high compared to the low MEP trials. Moreover, a paradigmatic pattern in which TMS was able to lead to significantly larger MEPs was found when the EEG of the stimulated motor cortex was coupled in the beta 2 band with the ipsilateral prefrontal cortex and in the delta band with the bilateral centro-parietal-occipital cortices.

Conclusion: This data provide evidence for a statistically significant influence of time-varying and spatially patterned synchronization of EEG rhythms in determining cortical excitability, namely motor cortex excitability in response to TMS.

Keywords: EEG; EEG coherence; EEG-TMS coregistration; cortical connectivity; navigated transcranial magnetic stimulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Analysis of Variance
  • Electroencephalography*
  • Electromyography
  • Evoked Potentials, Motor / physiology*
  • Female
  • Fourier Analysis
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Motor Cortex / physiology*
  • Predictive Value of Tests
  • Time Factors
  • Transcranial Magnetic Stimulation*
  • Young Adult