Brain monoamines and sexual behavior in Japanese quail: Effects of castration and steroid replacement therapy

Behav Processes. 1987 Apr;14(2):197-216. doi: 10.1016/0376-6357(87)90045-3.

Abstract

In the male Japanese quail, testosterone is required for the activation of sexual behavior. This steroid dependent process may rely heavily on mediation via monoaminergic neurons. These experiments were conducted to study the relationship between reproductive state (hormonal and behavioral components) and levels of monoamines in selected areas of the brain in Japanese quail. In Experiment 1, monoamine levels in a number of brain areas were compared in castrates, testosterone-implanted castrates, and intact males. Monoamine levels were comparable to those previously measured in Japanese quail, and there were no significant differences due to treatment. Plasma luteinizing hormone (LH) levels and recovery of cloacal gland area in implanted castrates confirmed the afficacy of treatments. In Experiment 2, the disappearance of dopamine (DA) and norepinephrine (NE) following administration of a-methyl-para-tyrosine (aMPT) was used as an indicator of turnover rate. Male and female quail were gonadectomized at 3 weeks of age. At the age of five weeks, some gonadectomized males and females were given implants containing testosterone. Only intact males and testosterone-implanted castrated males showed reproductive behavior. Plasma gonadotropin levels were elevated in gonadectomized birds and reduced in steroid-implanted gonadectomized birds. The aMPT treatment significantly reduced the levels of DA and NE in the telecephalon and the level of DA in the hypothalamus. After aMPT treatment, the disappearance of NE in the telecephalon and of DA in the hypothalamus were significantly different according to the sex or treatment of the birds or both. Significant interactions between these two factors were observed. Disappearance rate of NE in the telecephalon was decreased by castration of males and increased by ovariectomy of females. Both effects were counteracted by testosterone. Reverse effects were observed for DA disappearance in the hypothalamus (increase with castration in males and decrease with ovariectomy in females). These results give evidence for altered aminergic function in specific areas of the brain relative to altered reproductive state.